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We present a combined theoretical and experimental study, investigating the origin of the en-
hanced non-adiabaticity of magnetic vortex cores. Scanning transmission X-ray microscopy is used
to image the vortex core gyration dynamically to measure the non-adiabaticity with high precision,
including a high confidence upper bound. We show theoretically that the large non-adiabaticity
parameter observed experimentally can be explained by the presence of local spin currents arising
from a texture-induced emergent Hall effect. This study demonstrates that the magnetic damping
α and non-adiabaticity parameter β are very sensitive to the topology of the magnetic textures,
resulting in an enhanced ratio (β/α >1) in magnetic vortex cores or skyrmions.

The electrical control of magnetic textures through
spin angular momentum transfer has attracted a mas-
sive amount of interest in the past ten years [1]. As spin
torque-induced magnetization manipulation exhibits fa-
vorable scaling [2, 3], it underlies novel concepts to store
information in non-volatile devices, such as the race-track
memory [4] or the spin-transfer torque random access
memory [5]. Recent progress includes the manipulation
of two and three-dimensional chiral magnetic textures,
known as magnetic skyrmions [6–10], which constitute an
inspiring paradigm for potential applications [11]. The
dynamics of a magnetic texture M(r, t) = Msm(r, t),
with Ms being the saturation magnetization, induced by
spin transfer torque is usually modeled by the extended
phenomenological Landau-Lifshitz-Gilbert (LLG) equa-
tion [12, 13]

ṁ =− γm×Heff + αm× ṁ

− bJ (u · ∇)m + βbJm× (u · ∇)m, (1)

where the first two terms describe the damped preces-
sion of magnetization around the effective magnetic field
Heff, with γ denoting the gyromagnetic ratio and α being
the viscous Gilbert damping parameter. In the present
work, α refers to the damping of the homogeneous mag-
netic texture, which is different from the effective damp-
ing αvc felt by the vortex core, as discussed below. The
third term describes the adiabatic momentum transfer
from the spin polarized conduction electrons to the local
magnetization [14], where bJu = jePµB/eMs is the spin

drift velocity and P is the spin polarization of the con-
duction electrons. The last term (∼ βbJ) is the so-called
non-adiabatic spin transfer torque, which describes the
(possibly non-local) torques that do not result from the
adiabatic spin transfer [12, 13]. The magnitude of the
non-adiabaticity parameter β, and in particular the ra-
tio β/α, plays a crucial role in the device performance,
as it governs the domain wall velocity [12, 13]. Yet, the
physical origin and magnitude of the non-adiabaticity pa-
rameter are still under debate, calling for an in-depth
understanding of spin transport in magnetic textures.

It has been experimentally shown that the ratio β/α
depends on the domain wall structure, transverse or vor-
tex domain walls in soft magnetic nanostructures [15–18],
or 180◦-Bloch or Néel domain walls in materials with per-
pendicular magnetic anisotropy [19]. Vortex walls and
vortex cores in discs and rectangular elements exhibit a
large non-adiabaticity β ≈ 8 − 10α [16–18] compared to
transverse domain walls β ≈ α [17], albeit with some
uncertainty. This large non-adiabaticity is usually at-
tributed to mistrack between the itinerant spin momen-
tum and the local magnetization [14] due to the large
texture gradients present in the vortex core (radius of the
vortex core < 10 nm). However, the non-adiabaticity in
very narrow Bloch domain walls (domain wall width of
about 1 nm) in FePt nanowires is not significantly in-
creased [19], suggesting that spin mistracking might not
be the dominant mechanism for non-adiabaticity.

In this Letter, we present a combined theoretical
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FIG. 1. (Color online) (a) Schematic illustration of the mi-
crowave injection setup. (b) A scanning electron micrograph
of the permalloy nanowire under investigation and the two
gold contacts on top and at the bottom (yellow). (c) The
vortex core positions extracted from the time-resolved images
are plotted (black squares). The elliptical vortex core tra-
jectory (red ellipse) is fitted through the data points. (d) A
STXM image showing XMCD contrast of a vortex domain
wall at the center of the nanowire.

and experimental effort to uncover the origin of non-
adiabaticity in magnetic vortex cores. Using scanning
transmission X-ray microscopy to image the dynam-
ics of a magnetic vortex core, we first measure the
non-adiabaticity parameter with high precision βvc =
0.061± 0.006 and deduce a high confidence upper bound
βvc ≤ 0.11 ± 0.01. Then, based on analytical and nu-
merical calculations, we explain such an enhanced non-
adiabaticity by the emergence of a Hall effect due to the
two dimensional topology of the magnetic texture, an ef-
fect absent in one-dimensional domain walls.

To measure the non-adiabaticity βvc of the vortex
core, we dynamically imaged the steady state gyration
of the vortex core within a vortex domain wall, induced
by alternating spin-polarized currents. We study vor-
tex domain walls in a 30 nm thick and 500 nm wide
permalloy (Ni80Fe20) half-ring with a radius of 5 µm,
see Fig. 1(b). The half-rings were fabricated on top
of a 100 nm thick silicon nitride (Si3N4) membrane
by electron-beam lithography, molecular beam evapora-
tion in UHV and lift-off processing. To improve cool-

ing, a 150 nm thick aluminum nitride layer was de-
posited on top of the structures and on the backside
of the Si3N4 membrane. The wires are connected by
Cr(4 nm)/Au(100 nm) contacts, which are placed more
than 4 µm from the center of the nanowire [see Fig. 1(b)],
to minimize in-plane Oersted fields from vertical electri-
cal currents flowing from the contacts into the nanowire
[20]. At the position of the vortex wall, the in-plane
field component is negligible (B < 2µT ) [20], and there-
fore, we can assume that the vortex gyration is purely
induced by the spin transfer torque. Alternating cur-
rents je(t) = cos(2πft) · 8.7 · 1010 Am−2 are then injected
into the nanowire with different frequencies f , while mea-
suring the sample resistance with a small direct current
I = 10 µA, to measure the microwave power within the
nanowire and keep the current density constant at all
frequencies [21], see Fig. 1(a). The response of the mag-
netization to the spin currents was imaged employing
time-resolved scanning transmission X-ray microscopy
(STXM) at the Advanced Light Source in Berkeley, CA,
USA (beamline 11.0.2) [22] and at the MAXYMUS end-
station, Helmholtz Zentrum Berlin, BESSY II, Germany.
In-plane magnetic contrast is obtained by tilting the sam-
ple by 60◦ with respect to the X-ray beam and by tak-
ing advantage of the X-ray magnetic circular dichroism
(XMCD) [23]. The data is recorded at the Ni L3 absorp-
tion edge (852.7 eV). The lateral resolution is ≈ 25 nm
and the limiting temporal resolution is given by the width
of the X-ray photon flashes (< 70 ps).

The injection of alternating spin-polarized currents
through a vortex structure results in the resonant gy-
rotropic motion of the vortex core. [24, 25] To analyze
the acting torques, we use Thiele’s model [13, 26–28],
which describes the motion of the vortex core as a quasi-
particle in a restoring potential V (r)

Fst +∇rV (r) + G× [bJu− ṙ] = D [βvcbJu− αvcṙ] , (2)

where G = −Gpz is the gyrovector, Dij = δijD is the
diagonal dissipation tensor [29] and αvc is the damping
of the vortex core associated with the Gilbert damping
parameter. In a vortex domain wall the parabolic restor-
ing potential is asymmetric and tilted with respect to

the current flow V (r) = κx′
r2
x′
2 + κy′

r2
y′

2 , where κx′ , κy′

are the potential stiffnesses and r = (rx′ , ry′) is the dis-
placement of the vortex core from its equilibrium position
[20, 30, 31]. The coordinate system (x′, y′) is tilted by
an angle φ with respect to the nanowire (x, y) and aligns
with the parabolic potential (without loss of generality
κ′y < κ′x). The resulting motion of the vortex core fol-
lows an elliptical trajectory [30]. The analytical descrip-
tion of the vortex core trajectory in steady-state and in
an asymmetric and tilted potential can be found in the
Supplemental Materials [32].

Equation (2) describes the motion of the vortex core as
a quasi particle in a restoring potential V (r) under the ex-
citation of the force Fst = Fad+Fnad from spin-polarized
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currents that act via the (non-) adiabatic spin-transfer
torque on the vortex core [16, 30, 33]. The direction of
this force, given by the angle θ, can be calculated in the
quasi-static limit for ṙ = 0. It depends on the strength
of the non-adiabaticity βvc, on the tilt angle φ and the
asymmetry r = κy′/κx′ of the parabolic potential

tan θ =
G cosφ+ βvcD sinφ

−G sinφ+ βvcD cosφ

κy′

κx′
. (3)

Therefore, when the shape of the restoring potential V (r)
and the direction of the force θ is known, we can calculate
the non-adiabaticity of the vortex core βvc. Both, r and
φ are a priori unknown for the particular vortex domain
wall under investigation and must be determined exper-
imentally, in our case by recording the elliptical vortex
core trajectory close to resonance at f = 210 MHz [20].
The positions of the vortex core and the elliptical vor-
tex core trajectory are plotted in Fig. 1(c). The error
bars indicate the uncertainty of the individual vortex core
positions from the experimental images. By fitting an el-
liptical vortex core trajectory we find φ = 0.29±0.02 rad
and r = 0.19 ± 0.01, the error bars include the uncer-
tainty of the resonance frequency. Equation (3) allows
us to deduce a maximum bound for βvc from the qualita-
tive behavior of the phase response and through the sign
of the denominator [32].

The phase response εy of the vortex core to alter-
nating spin-polarized currents (measured along the y-
direction) directly depends on the direction θ of the driv-
ing force, and therefore on the non-adiabaticity βvc, see
Fig. 2. Knowing φ and r, and taking G = 0.86 pN · s/
m, D = 2.4 pN · s/ m [32], we can fit the phase re-
sponse εy with the Thiele model to determine the reso-
nance frequency fr = 194± 6 MHz, the non-adiabaticity
βvc = 0.061 ± 0.006 and damping αvc = 0.006 ± 0.001.
The fit also depends on the ratio between the magnitudes
of the gyrovector G and the dissipation tensor D, which
only moderately depend on the sample geometry [16, 34].
Experimentally, this phase response εy was measured by
fitting a sinusoidal response through the dynamic differ-
ential XMCD contrast at the position of the vortex core.
The differential images are obtained by the division of
each time-resolved image by the sum of all images. The
differential intensity at the region of the vortex core gy-
ration is directly proportional to the displacement of the
vortex core in vertical direction.

This high value for βvc, and in particular the ratio
βvc/αvc = 10.4± 0.3, is in good agreement with the val-
ues obtained by measuring the steady state vortex core
displacement [16], by observing thermally assisted do-
main wall dynamics [17], or by imaging the frequency
dependent vortex core trajectories [18]. However, such
a high non-adiabaticity at the vortex core is in contrast
with the much lower non-adiabaticity measured for one
dimensional domain walls [17, 19] and to the best of our
knowledge, none of the existing models properly account
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FIG. 2. (Color online) The phase response of the vortex core
gyration is plotted as a function of the excitation frequency
f , measured experimentally (green squares) and fitted ana-
lytically (black line). The error bars include the systematic
timing error of the individual time-resolved snapshots given
by the electron bunch length and the excitation frequency.

for such a large enhancement. Spin relaxation produces
a local non-adiabatic torque βsf ≈ 0.010 ∼ α [12, 17]
that dominates in smoothly varying magnetic textures
but cannot explain the observed non-adiabaticity in vor-
tices. Spin mistracking [14] is only significant for ex-
tremely sharp domain walls and exponentially vanishes
for textures smoother than the spin precession length
[35–37]. For instance, Ref. 37 estimates βsm ≈ 0.0045
for a domain wall width of 2.7 nm. Note that βsm can be
dramatically enhanced by disorder, although it is ques-
tionable whether this effect remains efficient in textures
much sharper than the mean free path [38]. Finally,
anomalous Hall effect produces non-adiabaticity in vor-
tex cores only [39] but in our system this contribution is
negligible (βAHE ≈ 0.0016) due to the small Hall angle
of permalloy (αH = 1%) [40]. Therefore, it appears that
none of the models proposed to date reasonably explain
the experimental observations [16–18].

We look for a non-adiabatic torque that is present in
vortices only, absent in transverse walls and that does
not require extreme magnetization gradients nor strong
disorder. Let us consider a clean magnetic system, free
from disorder and spin relaxation, with a texture smooth
enough so that spin mistracking (i.e. linear momentum
transfer [14]) can be neglected. In this system, the itin-
erant electron spin experiences an emergent electromag-
netic field in the frame of the local quantization axis [41].
This field can be expressed as [42, 43] (see Ref. [32])

Eσi = σ(~/2e)(∂tm× ∂im) ·m, (4)

Bσi = −σ(~/2e)εijk(∂jm× ∂km) ·m, (5)

where σ = ± refers to the spin projection on the lo-
cal quantization axis m, εijk is Levi-Civita’s symbol and
{i, j, k} = {x, y, z}. This local electromagnetic field
changes sign for the two opposite spins and emerges in
the presence of magnetization gradient only. As a result,
the spin-dependent charge current reads

jσe = GσE +GσE
σ + (G2

σ/en)E×Bσ, (6)
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FIG. 3. (Color online) (a,b) Two dimensional profile of the
adiabatic (a) and non-adiabatic torques (b) at the vortex
core. The position of the vortex core is indicated by the
white solid line and the torque magnitude is expressed as
τ‖,⊥(~a2/2∆)(sin2 ϑ/r20) × 103, where r0 = 8a, a being the
lattice parameter. (c,d) Effective adiabatic and non-adiabatic
torques (c) and corresponding ratio (d) for a magnetic vortex
core (red symbols) and transverse Néel wall (black symbol)
as a function of the core size and domain wall width, respec-
tively.

where Gσ is the conductivity of spin σ, n is the elec-
tron density and E is the applied electric field. The first
term is the conventional Ohm’s law, the second term is
induced by the so-called spin-motive force [41], while the
last term is the Hall effect generated by the local mag-
netic field. This emergent Hall effect is responsible for
the topological Hall effect observed in topologically non-
trivial magnetic textures such as skyrmions [44]. The
induced spin current tensor can be then written

J s = −bJm⊗ u + η
∑
i

[m · (∂im× ∂tm)]m⊗ ei

+λ2bJ[m · (∂xm× ∂ym)]m⊗ z× u, (7)

where we defined η = g~µBG0/4e
2Ms, λ

2 = ~G0/e
2nP ,

G0 = G↑ + G↓ is the conductivity, and ⊗ is the direct
product between spin space and real space. The absorp-
tion of this spin current produces a torque on the mag-
netic texture, τ = −∇ · J s, that reads

τ = bJ(∇ ·u)m− η
∑
i

[m · (∂im× ∂tm)]∂im

−λ2bJ[m · (∂xm× ∂ym)]([z× u] ·∇)m. (8)

The first term is the conventional adiabatic torque. The
second term, proportional to the temporal gradient of the
magnetization (∼ ∂tm) is a correction to the magnetic
damping [43] and the third term is the contribution from
the emergent Hall effect.

To evaluate the effect of these torques on the mag-
netic vortex dynamics, we consider an isolated vortex
core defined by m = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), with

ϑ(x, y) = 2 tan−1(r/r0) for r =
√
x2 + y2 ≤ r0, ϑ = π/2

for r0 ≤ r ≤ R, and ϕ = Arg(x, y) +π/2, where r0 (R) is
the inner (outer) radius of the vortex core [45]. Assuming
rigid vortex core motion [26], where ∂tm = −(v ·∇)m,
we obtain the velocity v = vxx + vyy of the vortex core

vx = −(1 + Cαvcβvc)/(1 + C2α2
vc)bJ, (9)

vy = C(αvc − βvc)/(1 + C2α2
vc)bJ, (10)

where C = 1 + ln
√
R/r0, αvc = α + (7/3C)(η/r2

0) and
βvc = β + (7/3C)(λ2/r2

0) are the renormalized damping
and non-adiabatic coefficient. Here, β ≈ α is the constant
non-adiabaticity parameter measured, e.g., in transverse
walls. Using G0 = 107 Ω−1 ·m−1, n = 5 × 1028 m−3,
P = 0.5, and Ms = 800 emu/cc, we get η = 0.24 nm2 and
λ2 = 1.6 nm2. As a consequence, we obtain βvc ≈0.054
and αvc ≈0.013. These estimations, derived in the frame-
work of the s-d model, disregard the spd hybridization of
transition metals. Furthermore, they assume adiabatic
spin transport, neglecting spin mistracking and thereby
underestimating the non-adiabaticity. Nevertheless, it
clearly indicates that the local spin current induced by
the emergent Hall effect [∼ ∂xm × ∂ym in Eq. (8)]
dramatically enhances the non-adiabaticity of the spin-
texture, an effect absent in one-dimensional domain walls
where only the magnetic damping is enhanced [43].

To properly account for spin mistracking and obtain
a more accurate estimate of the torque, we numerically
compute the spin transport in a vortex core using the
tight-binding model described in Ref. 38 (see Ref. [32] for
details). The torque is obtained from the local nonequi-
librium spin density δS, such that τ = (2∆/~)m × δS,
∆ being the exchange parameter. It is then parsed into
adiabatic and non-adiabatic components, τ = τad∇xm+
τnadm × ∇xm, reported on Fig. 3(a) and (b), respec-
tively. While τad is distributed homogeneously around
the center of the core, τnad is asymmetric along the di-
rection transverse to the applied electric field, reflecting
the Hall effect origin of the torque. To evaluate the effec-
tive non-adiabaticity parameter, the torque components
must be averaged over the volume Ω of the core texture
according to Thiele’s equation

〈τad〉 =
∫
dΩτad(∂xϑ∂yϕ−∂yϑ∂xϕ) sinϑ∫
dΩ(∂xϑ∂yϕ−∂yϑ∂xϕ) sinϑ

, (11)

〈τnad〉 =
∫
dΩτnad[(∂xϑ)2+sinϑ(∂xϕ)2]∫
dΩ[(∂xϑ)2+sinϑ(∂xϕ)2]

. (12)

The results are shown in Fig. 3(c) as a function of the
width of the core (red symbols). To compare, we also
report the values obtained in the case of a transverse Néel
domain wall of same width (black symbols). While the
adiabatic torques are about the same magnitude in both
cases, the non-adiabaticity in the vortex core is much
larger than in the transverse wall, resulting in a large non-
adiabaticity parameter β [see Fig. 3(d)]. The large non-
adiabaticity in vortex cores is attributed to the emergent
Hall effect reported in Fig. 3(b).
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In conclusion, we have determined the non-adiabaticity
of a magnetic vortex core βvc = 0.061 ± 0.006 using a
highly sensitive phase shift method. We derived a max-
imum bound by analyzing the qualitative behaviour of
the phase response, and conclude 0.041 < βvc < 0.11. To
explain such a high non-adiabaticity at the vortex core
we proposed that the texture-induced emergent Hall ef-
fect generates non-local non-adiabatic torques. The val-
ues obtained by the theory are consistent with the ex-
perimental observations. These results are particularly
encouraging for the manipulation of current-driven two
and three dimensional textures such as skyrmions.
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