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We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates
that involves immersion into a superfluid bath. When both the system and the bath have similar
scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either
imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect,
which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit.
We probe the coherence between separated condensates in different sites of an optical lattice by
monitoring the contrast and decay of Bloch oscillations. Our technique demonstrates a new way
that interactions can improve the performance of quantum devices.

Phase coherence between spatially separated quantum
objects is a central theme of quantum physics, with direct
relevance for many applications in quantum information,
quantum simulation [1–3], atom interferometry [4], and
force sensing [5–7]. Quantum mechanics fundamentally
limits the fidelity with which one can split a coherent ob-
ject, perform an operation on the separated parts of the
system, and read out phase information via interference.
Often, the coherence time is limited by technical fluctu-
ations or by interactions with the environment. For non-
interacting systems, classical shot noise determines the
signal-to-noise ratio and the final precision in the mea-
surement of the phase. The relative uncertainty scales
with the number of events N as 1/

√
N , and coherence

time is independent of N . In an interacting system, on
the other hand, the coherence time is often set by shot
noise, as number fluctuations cause fluctuations of the
chemical potential: δµ = δN × |∂µ/∂N |. Modifying in-
teractions can change |∂µ/∂N |, which can lead to a long
coherence time [8]. Another way of improving the limi-
tations set by shot noise is squeezing the uncertainty by
using nonlinear interactions between modes of the sys-
tem [9] or by using quantum measurements [10]. Highly
spin-squeezed states have been observed for pairs [11, 12]
and arrays [13] of independent Bose-Einstein condensates
(BECs).

In this Letter, we present a new method of enhanc-
ing the phase coherence time of separated BECs beyond
the shot noise limit by immersing the system into a su-
perfluid bath—an effect we will call superfluid shielding.
The superfluid bath, through its interactions with the
system, compensates for technical and number fluctua-
tions which would otherwise shorten the coherence time.
In an optical lattice, the phase coherence and number
fluctuations of a BEC can be probed by the time evolu-
tion after a rapid projection of the state onto a localized
basis, either through a fast ramp to high lattice depths
[14], or by the sudden application of a large acceleration

to the lattice. The second case leads to the phenomenon
of Bloch oscillations, which we use to create separated
condensates and probe their phase coherence. By track-
ing the evolution of Bloch oscillations, we demonstrate
that superfluid shielding can shield inhomogeneities cre-
ated both by external fields common to both spin species
(e.g. an optical trapping potential) and by fundamental
projection noise. A theoretical analysis shows that fluc-
tuations in the chemical potential can be reduced by up
to two orders of magnitude for 87Rb condensates.

We begin with a BEC in an optical lattice, and create
separated BECs by suddenly applying a strong poten-
tial gradient. The tilted potential suppresses resonant
tunneling and allows the now separated condensates to
evolve independently. In this regime, the energy offset
between adjacent lattice sites ∆ is much larger than the
bandwidths ∼4J , where J is the nearest-neighbor tun-
neling matrix element. Most previous studies on Bloch
oscillations have been done in the low-tilt regime [15–17]
where adjacent Wannier-Stark states overlap. It has been
shown in this regime that the presence of quasi-random
disorder causes dephasing of Bloch oscillations that can
be partially compensated by weak interactions [18, 19]
if the disorder is present before the tilt. Our work ad-
dresses the very different situation of a two-component
system, where the second component does not feel the
applied force and remains free to shield fluctuations cre-
ated during or after the tilt, including fluctuations in the
chemical potentials of the separated condensates due to
projection noise.

A graphical description of superfluid shielding is pre-
sented in Fig. 1a-c. After the sudden tilting of the |↓〉
atoms, without shielding, the precession of the phase on
each site is given by the local chemical potential and
its fluctuations, µ↓j . When immersed in the superfluid
of |↑〉 atoms, which are not subject to the tilt, the |↓〉
atoms experience repulsive interactions with the |↑〉 com-
ponent. Because |↑〉 atoms remain itinerant, these atoms
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FIG. 1. (Color online) Schematic of superfluid shielding. (a)
Before applying a tilt, the atoms are in a superfluid, which
is approximately described by a coherent state on each site.
The chemical potential is constant across the cloud. (b) In the
limit of a strong tilt (∆� J), the wavefunction at each lattice
site is projected onto the number basis, leading to fluctuations
in the number of atoms and chemical potential from site to
site. (c) If the gas has two components, one which is localized
by the tilt, and one which remains superfluid, the itinerant
component can compensate for fluctuations in the localized
component. (d-f) Momentum distribution over the course
of a single Bloch oscillation after ten cycles. (d) Without
superfluid shielding, the diffuse cloud indicates decoherence
of the condensate. (e) The itinerant component feels no force
and does not Bloch oscillate. (f) For the shielded component,
the Bloch oscillation contrast is high. (g) Exponential decay
of the Bloch oscillation contrast for a one-component (blue
dots) and two component (red squares) gas, for a transverse
lattice depth of 11 Er and ∼8× 103 atoms.

can freely adjust their local density in order to counter-
act the fluctuations in |↓〉 atoms and thus maintain a
uniform global chemical potential. Fluctuations in the
density of the |↓〉 atoms, which would normally lead to
chemical potential fluctuations and dephasing, are now
anti-correlated with the |↑〉 density.

A more quantitative understanding of the system’s re-
sponse to both inhomogenous potentials δV and density
fluctuations δn↓ can be developed by examining the two-
component Gross-Pitaevskii equation in the Thomas-
Fermi approximation given by:

µ↓j = g↓↓n↓j (x, y) + V ↓ext,j(x, y) + g↑↓n↑j (x, y) (1)

µ↑j = g↑↑n↑j (x, y) + V ↑ext,j(x, y) + g↑↓n↓j (x, y), (2)

where µ
(↑,↓)
j and n

(↑,↓)
j are the chemical potential and

number density, respectively, for a given component and
site index j. The interaction terms g↑↑, g↓↓, and g↑↓

are given by 4πh̄2a(↑↑,↓↓,↑↓)/m where a(↑↑,↓↓,↑↓) are the
s-wave scattering lengths for intra- and inter-component
collisions. Before applying the tilt, V ↓ext,j and V ↑ext,j are

both given by a common-mode harmonic trapping po-
tential Vtrap,j , and since both components are superfluid,

µ
(↑,↓)
j are constant across the cloud and independent of
j. For a single-component system, this implies that the
trapping potential is fully compensated by the inhomo-
geneous Thomas-Fermi density profile [20].

When a spin dependent tilt of ∆ per lattice site is
applied, number fluctuations in the |↓〉 component, δn↓j ,
are frozen in. We also allow for spin-independent poten-
tial fluctuations, so the total potentials are now V ↑ext,j =

Vtrap,j + δVj and V ↓ext,j = Vtrap,j + δVj − j∆. The |↑〉
component remains superfluid and therefore keeps a con-
stant chemical potential µ↑j = µ↑. This gives density

fluctuations that are anti-correlated with both δn↓j and
δVj :

δn↑j = −δVj
g↑↑
− g↑↓

g↑↑
δn↓j . (3)

The back-action of δn↑j on the chemical potential for the
|↓〉 component,

µ↓j = g↓↓
(
n↓j + δn↓j

)
+ V ↓ext,j + g↑↓

(
n↑j + δn↑j

)
= µ↓,0 − j∆ + δµ↓j

(4)

where µ↓,0 is the constant chemical potential of |↓〉 before
the tilt is applied, leads to a reduction in the fluctuations

δµ↓j = η1g
↓↓δn↓j + η2δVj , (5)

by the factors η1 =
(
g↑↑g↓↓ −

(
g↑↓
)2)

/g↑↑g↓↓ and η2 =(
g↑↑ − g↑↓

)
/g↑↑, which are both small for g↑↑ ≈ g↓↓ ≈

g↑↓. Then the chemical potential is nearly independent
of both common-mode potential fluctuations and atom
number fluctuations, and depends only on the state-
specific potential j∆, leading to long-lived Bloch oscil-
lations. In 87Rb, all scattering lengths between hyper-
fine ground states are similar to the percent level, so the
shielding factor can in principle be around 100.

We demonstrate this principle experimentally by vary-
ing both technical and fundamental inhomogeneities in
the localized component and observing the effect of su-
perfluid shielding. Our experiments begin with a nearly
pure BEC in the |F,mf 〉 = |1,−1〉 state, levitated against
gravity by a magnetic field gradient and held in a har-
monic trapping potential. Before levitation, the atom
number is precisely controlled independently of the trap
frequencies by varying the trap depth of a tightly con-
fining dimple trap. In 100 ms, we ramp up a three-
dimensional lattice potential with a lattice spacing of 532
nm. The vertical lattice is raised to 12 Er where Er is
the recoil energy, while the transverse lattices are var-
ied to change the densities, and therefore the interaction
strengths. We then transfer a variable fraction of the
atoms from the |↑〉 ≡ |1,−1〉 state to the |↓〉 ≡ |2,−2〉
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FIG. 2. (Color online) Superfluid shielding of external fields,
applied by increasing the trap frequency. The vertical dashed
line is the initial trap frequency that corresponds to a linear
chemical potential for the |↓〉 atoms. We compare the contrast
after 25 Bloch oscillation cycles for unshielded (blue dots) and
shielded (red squares) components. In this figure only, for
technical reasons, one of the transverse lattices had a spacing
of 392.5 nm.

state with an RF sweep that is faster than a Bloch os-
cillation period. We control the ratio of the number of
atoms in the two spin states by varying the intensity
of the radio-frequency drive for a fixed duration of the
sweep.

After state preparation, the |↓〉 atoms feel an energy
gradient of h × 3410 Hz per lattice site along the verti-
cal direction, given by a combination of gravity and the
magnetic field. This tilt is much stronger than tunneling
(∼h×24 Hz), so the localization length ∼ J

∆a is much less
than the lattice spacing a, and the state is effectively pro-
jected onto a localized number basis, creating about ten
separated condensates, each with up to 3500 atoms. The
remaining |↑〉 atoms, however, are still levitated against
gravity and remain in a superfluid state. We allow the
system to evolve for a variable time, switch off all confin-
ing potentials, and perform Stern-Gerlach separation of
the spin states during ballistic expansion. An absorption
image is used to measure the contrast of the resulting
diffraction pattern.

Figure 1d-f shows the central peaks of the Bragg
diffraction pattern in time-of-flight of a single Bloch os-
cillation after ten Bloch oscillation cycles for two cases:
full transfer of the ensemble to the tilted state (d), and
a two-component gas with superfluid (e) and localized
(f) components. The increased contrast of the superfluid
peaks in the shielded system demonstrate a persistence of
correlations longer than allowed by the dephasing mech-
anisms affecting the system in (d). The contrast is ob-
tained from a fit to the observed density distributions
in the tilted direction and serves as the observable char-
acterizing the phase correlations in the lattice (see Sup-

plemental Material [21]). An effective coherence time is
obtained by fitting the decay to an exponential curve as
seen in Fig. 1g. In all figures, the blue dots represent a
single-component (unshielded) gas, and the red squares
represent a two-component (shielded) gas. The slower
decay of the shielded oscillations is clearly visible. Since
the purpose of this paper is to show how extended co-
herence times can be achieved at strong interactions, we
have intentionally increased the effect of interactions. It
should be noted that longer coherence times have been
observed in systems with lower densities and interactions
[16, 20].

To demonstrate superfluid shielding of common-mode
external fields, curvature was intentionally added to the
chemical potential by changing the external confinement
after the tilt was applied. The vertical trapping fre-
quency was increased from ωi = 2π×128 Hz to a variable
ωf , which adds a quadratic term to the chemical poten-

tial δVj = 1
2m
(
ω2
f − ω2

i

)
z2
j , where m is the 87Rb mass

and zj is the position of the jth lattice plane. The added
curvature of the chemical potential leads to dephasing
and dramatically shortens the lifetime of the unshielded
oscillations [20]. However, superfluid shielding can com-
pensate for the external potential, and allow the oscilla-
tions to maintain a high contrast (Fig. 2).

In the absence of perturbing external potentials, the
contrast lifetime of Bloch oscillations is fundamentally
limited by atomic projection noise. The dashed lines in
Figs. 3 and 4 represent two models that were used to esti-
mate the effect of projection noise. The first model (lower
dashed line) assumes Poissonian shot noise in the atom
number in a given plane, δNj =

√
Nj . Finite interactions

during lattice ramp-up can reduce these fluctuations by
two-mode number squeezing [22] which is included in the
second model (upper dashed line, see Supplemental Ma-
terial [21]).

Superfluid shielding can compensate even for this fun-
damental noise. We demonstrate this principle by vary-
ing the chemical potential, changing either the atom
number or the depth of the transverse lattice. For har-
monic confinement in two dimensions, the Thomas-Fermi

profile implies |∂µj/∂Nj | ∝ N−1/2
j U1/2, where Nj is the

number of atoms in a plane and U is the Hubbard inter-
action strength for the three-dimensional lattice. There-
fore, the projection noise limit does not depend on the
atom number whereas the squeezed projection limit in-
creases with increasing atom number. The observed
shielded lifetimes in Fig. 3a exceed the limits set by either
model, and are constant to within experimental uncer-
tainty. In Figure 3b, the chemical potential was modified
by varying the lattice height in the transverse, non-tilted
directions, thus increasing the local density and therefore
interaction strength U , at constant atom number. This
leads to a decrease in both the shot noise and squeezed
projection noise limits with increasing chemical poten-
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FIG. 3. (Color online) Superfluid shielding for different atom
numbers and densities. Show are the exponential decay life-
times of spin |↓〉 Bloch oscillating component for unshielded
(blue dots) and shielded (red squares) cases versus chemical
potential. In (a), the chemical potential is changed by vary-
ing atom number from ∼6 × 103 to ∼2 × 104 while keeping
the lattice depths at 10 Er in both transverse directions. In
(b), the chemical potential is varied by changing the trans-
verse lattice depth from 4 Er to 11 Er. In both plots, the
dashed lines represent the projection noise limit given by two
theoretical models (see text).

tial. For low lattice depths, the shielded and unshielded
results are consistent with the projection noise limit, but
as the lattice depth increases, the unshielded lifetime de-
creases to below that predicted by shot noise while the
shielded lifetimes consistently exceed the projection noise
limit.

The difference between the unshielded lifetimes and the
projection noise prediction, and the finite lifetime of the
shielded sample are most likely due to technical imperfec-
tions that produce inhomogeneous chemical potentials.
For the unshielded samples in Figure 3, a non-adiabatic
lattice ramp can lead to a curvature of the chemical po-
tential which produces dephasing faster than that pro-
duced by projection noise. For the shielded samples,
the aforementioned curvature is eliminated by superfluid
shielding and dephasing is limited by the curvature of the
applied external magnetic field which we estimate to be
on the order of ∼100 Hz across the size of the sample,
consistent with observed lifetimes in Figure 3.

Finally, we demonstrate that only a small fraction of
the atoms need to be in the superfluid state for the shield-
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FIG. 4. (Color online) Contrast lifetime versus shielding frac-
tion. Exponential decay lifetime of spin |↓〉 Bloch oscillating
component upon varying the number of atoms in spin |↑〉
state (i.e. fraction of atoms in |↑〉 state over total number of
atoms) indicates that shielding is effective beyond projection
noise limits once more than 25% atoms are in the |↑〉 state.

ing effect to be robust. Figure 4 shows that as long as this
fraction is at least 20-30% of the atoms, full superfluid
compensation is achieved. In principle, the chemical po-
tential of the itinerant component can be as small as the
residual fluctuations in the tilted component in order to
provide the full shielding effect. At constant total atom
number, increasing the |↑〉 fraction f will reduce the num-
ber of atoms in the localized state, which decreases the
signal-to-noise of the measurement by a factor of

√
1− f .

However, as seen in Equation 5, the shielding is a much
stronger effect, and experimentally, we find an increase
in lifetime by a factor of 3.2 for f ≈ 1/2.

In conclusion, we have demonstrated superfluid shield-
ing as a new method to increase the coherence lifetime
of a quantum system through the use of interspin in-
teractions. We have shown how superfluid shielding is
a robust effect that can compensate for common-mode
external fields, as well as fundamental fluctuations due
to shot noise to extend the lifetime of Bloch oscillations
beyond the shot noise limit. This could improve the sen-
sitivity of force sensors based on Bloch oscillations [6].
In addition, although interactions are usually avoided in
precision measurement, this work provides another ex-
ample how interactions can enhance the performance of
atomic clocks [23–25] or atom interferometers [11, 12].

This work focused primarily on the coherence of the lo-
calized spin, and how the itinerant component preserved
it. However, the dynamics of the itinerant component is
equally interesting. Since the mean field of the localized
component appears as disorder to the itinerant compo-
nent, in an appropriate regime, questions of localization
of the itinerant component may arise. Finally, adding
laser-assisted tunneling processes to the tilted compo-
nent [1–3] enables study of an interacting two compo-
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nent system where only one spin is subject to a synthetic
magnetic field.
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Rev. Lett. 104, 073602 (2010).

[10] J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner,

Z. Chen, and J. K. Thompson, Nature Photonics 8, 731
(2014).

[11] G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba,
W. Ketterle, D. E. Pritchard, M. Vengalattore, and
M. Prentiss, Phys. Rev. Lett. 98, 030407 (2007).

[12] G.-B. Jo, J.-H. Choi, C. A. Christensen, T. A. Pasquini,
Y.-R. Lee, W. Ketterle, and D. E. Pritchard, Phys. Rev.
Lett. 98, 180401 (2007).

[13] J. Estve, C. Gross, A. Weller, S. Giovanazzi, and M. K.
Oberthaler, Nature 455, 1216 (2008).

[14] S. Will, T. Best, U. Schneider, L. Hackermller, D.-S. Lh-
mann, and I. Bloch, Nature 465, 197 (2010).

[15] D. Witthaut, M. Werder, S. Mossmann, and H. J. Ko-
rsch, Phys. Rev. E 71, 036625 (2005).

[16] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Wein-
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