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We report on the discovery of a novel class of bursting rhythms, called amplitude-modulated
bursting (AMB), in a model for intracellular calcium dynamics. We find that these rhythms are
robust and exist on open parameter sets. We develop a new mathematical framework with broad
applicability to detect, classify, and rigorously analyze AMB. Here we illustrate this framework in
the context of AMB in a model of intracellular calcium dynamics. In the process, we discover a
novel family of singularities, called toral folded singularities, which are the organising centers for the
amplitude-modulation and exist generically in slow/fast systems with two or more slow variables.

PACS numbers: 87.19.ll, 87.19.ln, 05.45.-a, 82.40.Bj

Bursting – the repeated pattern of closely spaced ac-
tion potentials separated by quiescence – is a ubiquitous
type of neuronal activity, supported by diverse biologi-
cal and mathematical mechanisms [1–5]. Many different
types of bursting have been identified, including square-
wave bursting in the pancreas [6], brainstem [7], and cor-
tex [8]; elliptic bursting in the basal ganglia [9], thalamic
neurons [10], rodent trigeminal neurons [11], and cortex
[12]; parabolic bursting in the Aplysia abdominal gan-
glion [13]; and many others [4, 14]. Although the func-
tional significance of bursting remains incompletely un-
derstood, bursts have been proposed to support numer-
ous functional roles. These include the communication of
specialized information with more reliability than indi-
vidual spikes [15, 16], synchronization between neuronal
populations [17], attention [18], synaptic plasticity [19],
and memory and awareness [20].

In this Letter, we report on the discovery of a novel
form of bursting, called amplitude-modulated bursting
(AMB). The discovery was made for the Politi-Höfer
(PH) model [21] for intracellular calcium dynamics. The
novel features of AMB are the oscillations in the envelope
during the active phase. These oscillations extend the
burst duration. Variations in system parameters system-
atically alter the number of oscillations in the envelope
(Fig. 1). Moreover, AMB turns out to be robust.

We also report that the AMB rhythms in the PH model
are controlled by torus canard dynamics, and in turn,
there is a novel class of singularities for differential equa-
tions, which organise the torus canards and hence the
AMB. To date, analysis of torus canards has focused
on models with only one slow variable [23–26], where
torus canards mediate the transition from tonic spiking
to bursting of various types. However, these only exist in
narrow parameter intervals and are difficult to observe in
calcium signalling and in physical systems. By contrast,
the PH model has two slow variables, and we find that
the torus canards are robust, exist on open parameter
sets, and are organised by these novel singularities.

Intracellular calcium dynamics plays a crucial role in
the biological function of most cell types. Direct effects
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FIG. 1. The PH model (1) exhibits AMB on open pa-
rameter sets. Parameter changes switch the system from
(a) bursting to (b)–(d) AMB. In (a) VPLC = 0.151 µM,
(b) VPLC = 0.1498 µM, (c) VPLC = 0.1495 µM, and (d)
VPLC = 0.1489 µM. All other parameters are fixed at the val-
ues in [22], except ν0 = 0.001 µMs−1 and δ ≈ 0.473. The blue
curve is the solution of (1), and the red curve is its envelope.

include cell depolarization, and indirect effects include
modulation of channels permeable to other ions [27], and
synaptic transmission. Intracellular calcium encodes in-
formation via frequency modulation and amplitude mod-
ulation [28], and has also been proposed as central to
development and plasticity in the nervous system [29].

The PH model [21] for calcium oscillations due to in-
teractions between calcium transport processes and the
metabolism of inositol (1,4,5)-trisphosphate (IP3) is

ċ = Jrelease − Jserca + δ (Jin − Jpm) ,

ċt = δ (Jin − Jpm) ,

ṙ =
1

τr

(
1− rKi + c

Ki

)
,

ṗ = k3K

(
VPLC −

c2

K2
3K + c2

p

)
.

(1)

Here c and ct represent the calcium concentration in
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the cytoplasm and endoplasmic reticulum stores, respec-
tively, r represents the fraction of IP3 receptors that have
not been inactivated by calcium, and p is the concentra-
tion of IP3 in the cytoplasm. The calcium flux through
the IP3 receptors is given by Jrelease; the active trans-
port of calcium across the endoplasmic reticulum and
plasma membrane by Jserca and Jpm, respectively; and
the calcium flux into the cell via the plasma membrane
by Jin. The fluxes Jrelease, Jserca, Jin and Jpm are func-
tions of (c, ct, r, p), see [21, 22].

The c and r variables evolve rapidly, with timescales
of 0.74 s and 6.6 s. The ct and p variables evolve slowly,
with timescales of 200 s and 50 s. That is, the PH model
is a slow/fast system with two fast variables (c, r) and
two slow variables (ct, p). The ratio, ε, of fast and slow
timescales is proportional to the parameter δ. (In fact,
ε = 0.0035 for the δ value given in Fig. 1.) The PH
model can be recast in the standard slow/fast form given
in [30]. See also [22, 31].

The parameter VPLC represents the steady-state IP3

concentration in the absence of calcium feedback, and is
controlled in experiments [21, 22]. Variations in VPLC
can generate a wide array of different behaviours. For
a range of values including VPLC = 0.151 µM, one finds
bursts of activity (Fig. 1(a)), which have been classified
as subcritical elliptic bursting [4].

A novel type of activity (AMB) is observed for lower
values of VPLC (Fig. 1(b)). The number of oscillations
in the envelopes of the bursts increases (Fig. 1, bottom
row) as VPLC decreases. Similar behaviour is observed
on open and physically relevant parameter sets for all
other parameters of (1).

In Figure 2, we address the dynamical mechanisms that
govern AMB. The attracting and repelling invariant man-
ifolds, Pεa and Pεr , of limit cycles are shown in blue and
red, as computed using a novel numerical method [31],
which extends existing homotopic continuation methods
[25, 32]. Each intersection of Pεa and Pεr corresponds to
a torus canard. The first intersection of Pεa and Pεr , de-
noted ξ0 (black curve), is the strong torus canard. It
is the local phase space separatrix that divides between
those bursting solutions that exhibit oscillations in their
envelope and those that do not. The remaining intersec-
tions of the invariant manifolds, ξi, i = 1, 2, 3 (shown in
cyan, brown, and green, respectively), are the secondary
torus canards. The innermost intersection of Pεa and Pεr
is the weak torus canard, ξw (= ξ4; black curve). It plays
the role of a local axis of rotation; the invariant manifolds
and the other torus canards twist around ξw.

For each integer n = 1, 2, . . ., families of torus canards
are observed on open intervals of VPLC . The secondary
torus canards partition the invariant manifolds into ro-
tational sectors. Every orbit on Pεa between ξn−1 and ξn
for n = 1, 2, . . ., is an AMB where the envelope executes
n oscillations about ξw.

Fig. 3 illustrates the rotational sectors formed by the
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FIG. 2. The invariant manifolds of limit cycles, Pε
a and Pε

r ,
organise the AMB. In the cross-section ct ≈ 1.2844 (bottom),
the attracting and repelling manifolds of limit cycles, Pa and
Pr, of the fast (c, r) subsystem (i.e., for ε = 0) meet at the
TFN point. The invariant manifolds, Pε

a and Pε
r , for ε =

5×10−5, intersect at the points ξ0− ξ3, ξw. The torus canard
solutions lie in these intersections. Here, VPLC = 0.2 µM.

maximal torus canards. For fixed parameters, the num-
ber of oscillations in the burst envelope can be changed
by adjusting the initial condition. For example, with ini-
tial condition on Pεa between ξ0 and ξ1, the trajectory
Γ of (1) is an AMB with one oscillation in the envelope
(Fig. 3, top row). When the initial condition lies in the
sector bounded by ξ1 and ξ2 (Fig. 3, middle row), the
envelope exhibits two oscillations. Each time the initial
condition crosses a torus canard, an extra oscillation is
added (Fig. 3, bottom row). By generating extra oscilla-
tions in the profile of the AMB, the torus canards reliably
increase the burst duration (Fig. 3, right column).

The torus canards are the local mechanisms respon-
sible for the amplitude modulation by generating oscil-
lations in the envelope of the bursting waveform. A
complete understanding of these dynamics requires de-
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FIG. 3. Transitions through the rotational sectors establish
AMBs of different duration. Each torus canard is the bound-
ary between AMB solutions with different numbers of oscil-
lations in the envelope. Parameter values are as in Fig. 1(d).
Left column: projection into the (ct, c) phase space. Four
torus canards (ξ0 to ξ3) and the weak torus canard (ξw) are
shown. The black dot indicates the TFN. Right column: time
evolution of the AMB solution Γ.

termining where the torus canards originate. We find in
system (1) that there is a novel family of singularities
for differential equations, called toral folded singularities
(TFS), from which the torus canards originate. A TFS
is a special limit cycle of the fast (c, r) subsystem with
two distinguishing features. (i) It is a saddle-node of pe-
riodics (SNPO). (ii) The averaged slow flow along P can
pass through the TFS with finite, non-zero speed and
cross from Pa to Pr, and follow Pr for substantial times.
This second property distinguishes the TFS from regular
SNPOs (where the averaged slow flow along P blows up
in finite time) and is satisfied generically in systems with
two or more slow variables.

The eigenvalues at the TFS determine the existence
and number of torus canards that persist for ε small and
positive. In (1), for VPLC > 0.38642 µM, the TFS has
complex eigenvalues. Hence, they are of focus type, and
there are no torus canards. For 0.129011 µM < VPLC <
0.38642 µM (Fig. 4, top row), the TFS has two real
negative eigenvalues and is termed a toral folded node
(TFN). Torus canards exist on this parameter interval
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FIG. 4. Top: eigenvalue ratio, µ, of the TFS as a function of
VPLC . Black markers indicate odd integer resonances, where
secondary torus canards bifurcate from the weak torus canard.
Bottom row: cross-sections of the invariant manifolds of limit
cycles, Pε

a and Pε
r , for ε = 5× 10−5 in an O(

√
ε) neighbour-

hood of the TFN; see Fig. 2. Bottom left: VPLC = 0.16 µM
and µ ≈ 0.06344 (2 primary and 7 secondary torus canards).
Bottom right: VPLC = 0.23 µM and µ ≈ 0.1297 (2 primary
and 3 secondary torus canards).

and AMBs are observed. For VPLC < 0.129011 µM, the
TFS has real eigenvalues of opposite sign. Hence, they
are of saddle type and have precisely one torus canard.
At the transition VPLC = 0.129011 µM where one of the
eigenvalues is zero, the TFS is of saddle-node type. Toral
folded saddle-nodes mark the boundary between spiking
and amplitude modulated rhythms.

The TFNs are the central TFS of interest for AMB.
They behave like stable nodes in that all trajectories on
Pa in their basins of attraction will converge to them.
The torus canards of a TFN will exist for ε small and
positive. With µ := λw/λs, where λs < λw < 0 are the
eigenvalues of the TFN, the floor function bµ+1

2µ c+1 gives
the number of torus canards.

In the case of a TFN, each time µ−1 increases through
an odd integer, an additional secondary torus canard
(i.e., an additional oscillation in the envelope of the wave-
form) appears. Fig. 4 (bottom row) illustrates this mech-
anism in (1). As VPLC decreases and µ−1 increases, the
invariant manifolds of limit cycles become more twisted,
resulting in additional intersections.

Having identified the torus canards and the TFS that
are the local mechanisms responsible for the amplitude
modulation, we now identify the global return mechanism
that completes the AMB rhythm. We begin by construct-
ing the singular attractor, i.e., the orbit that the system
converges to in the limit ε→ 0 (Fig. 5, black trajectory).
The singular attractor is the concatenation of four orbit
segments. Starting in the quiescent phase, there is a slow
drift (black, single arrow) along the attracting equilibria,
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FIG. 5. The AMB rhythm consists of a local mechanism of
amplitude modulation and a global return mechanism. (a)
Geometric construction of the AMB rhythm. The critical
manifold (red surface), Sa ∪ Sr, possesses a curve of Hopf bi-
furcations H of the fast subsystem. The manifold of limit
cycles (blue surface), Pa ∪ PL ∪ Pr, emanates from H. The
coloured trajectories are the ε-unfoldings of the singular at-
tractor for ε = 1 × 10−4 (cyan), ε = 5 × 10−4 (brown), and
ε = 1×10−3 (green). The time evolution of the AMB solution
is shown for (b) ε = 0, (c) ε = 1 × 10−4, (d) ε = 5 × 10−4,
and (e) ε = 1 × 10−3 . In each subfigure, the blue curve is
the AMB rhythm itself. The envelope color in each subfigure
corresponds to the colors in (a).

Sa, of the fast subsystem (i.e., the critical manifold) that
takes the orbit up to the curve H of (subcritical) Hopf
bifurcations of the fast subsystem, where the stability of
S changes. This initiates a fast upward transition (black,
double arrows) away from H towards the attracting man-
ifold of limit cycles, Pa. Once the trajectory reaches Pa,
there is an average slow drift (black, single arrow) that
moves the orbit along Pa towards the SNPO, labelled
PL, and into the basin of attraction of the TFN. The
slow drift brings the trajectory to the TFN (green dot),
where there is a fast downward transition (black, double
arrows) that projects the trajectory to Sa, completing
one full cycle of the singular orbit.

Fig. 5 shows that the singular attractor perturbs to
an AMB rhythm for small ε (coloured trajectories). As
stated above, the oscillations in the envelope are due to
the twisting of the invariant manifolds of limit cycles in
the neighbourhood of the TFN. The size of the oscilla-
tions in the envelope varies with ε. First, the invariant

manifolds of limit cycles spiral around the weak torus ca-
nard with amplitude O(

√
ε). (Thus, the amplitude of the

modulations is O(
√
ε).) Second, the position of the AMB

trajectory changes relative to the maximal torus canards
as ε increases; the cyan and brown trajectories in Fig.
5 are closer to one of the maximal torus canards than
the green trajectory. The green solution lies in a differ-
ent rotational sector than the cyan and brown solutions.
Hence, the green solution has fewer oscillations.

Eventually, the trajectory leaves the neighbourhood of
the TFN and enters the silent phase of the burst. The
silent phase is a small O(ε)-perturbation of the slow drift
on Sa. The trajectory does not immediately leave the
silent phase when it reaches H. Instead, the initial expo-
nential contraction along Sa allows trajectories to follow
the repelling slow manifold, Sr, to the left of H for sub-
stantial times [33]. However, there eventually comes a
moment where the repulsion on Sr overwhelms the ac-
cumulated contraction and the trajectory transitions to
be near Pa. This returns the trajectory to one of the
rotational sectors formed by the maximal torus canards,
and completes the AMB cycle.

The inter-burst frequency is determined by the amount
of time the trajectory spends in the silent phase. To lead-
ing order (for ε = 0), this is the time taken for the orbit to
move from where it lands on Sa to where it encounters
H. For ε small and positive, the inter-burst frequency
changes slightly each time the AMB returns to the silent
phase.

In summary, we have reported on the existence of novel
amplitude-modulated bursting (AMB) solutions in the
PH model (1) for intracellular calcium dynamics and
found that they originate from a combination of local
and global mechanisms. The local mechanism consists
of the toral folded nodes (TFN), which control the num-
ber of oscillations in the burst envelope and organize the
attendant torus canards. The global mechanism funnels
orbits into the rotational sectors of the TFN.

Motivated by this discovery of the AMB and the
TFN in (1), we developed a new mathematical frame-
work in [31] for TFN, torus canards, and AMB so-
lutions in slow/fast systems with two (or more) slow
variables. This theory shows that the TFN, torus ca-
nards, and AMB solutions are generic, so that they ex-
ist robustly in neuroscience, including the Hindmarsh-
Rose [34], Morris-Lecar-Terman [35], and Wilson-Cowan-
Izhikevich [4] models, as shown in [31]. Also, connections
are made in [31] to torus canards in the forced van der Pol
equation [25], which is a prototypical nonlinear oscillator
in biology, electrical engineering, and physics. Moreover,
the numerical study of [36] shows that generic torus ca-
nards also exist in a model of coupled respiratory neurons
in the pre-Bötzinger complex.

The robustness of the torus canards in these models
indicates that it may be possible to observe AMB ex-
perimentally. While no direct examples have been found
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yet, a possible example of AMB in experimental record-
ings can be found in leech heart interneurons [37, 38].
The time series reported in [39] from a model of leech
heart exhibits a rhythm generated by local mechanisms
that appears to be somewhat similar to AMB.

AMB solutions represent a form of combined ampli-
tude and frequency modulation (AM, FM). The oscilla-
tions in the burst amplitude introduce a second, lower fre-
quency modulating the high-frequency fast oscillations,
while at the same time the envelope of the burst exhibits
AM. As shown in [28], both AM and FM are crucial to in-
tracellular calcium signalling. The potential of combined
AM and FM may also be of significance in communica-
tion and laser technology.

Finally, we observe that our study of the PH model has
also identified the entire class of toral folded singularities
(TFS) to which the TFN belong. The other types of
TFS, which are presented in [31], have different types of
torus canard dynamics associated to them. Hence, there
is the potential for discovering further novel solutions.
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