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Abstract

We introduce a new class of non-equilibrium Casimir forces, where the deviation from equilibrium

is achieved through the use of non-zero chemical potential of photons. Such a force can be observed

when two semiconductors are brought in close proximity to each other, and when at least one

of the semiconductors are subject to an external voltage. By exact numerical calculations of a

sphere-plate configuration, we show that in the total force the non-equilibrium component can

dominate over its equilibrium counterpart with a relatively modest external voltage, even when

the sphere-plate separation is in the nanoscale. And as a result, repulsion can be achieved at

nanoscale even with relatively modest applied voltage. The results here point to a pathway that

can significantly advance the quest for observing and harnessing non-equilibrium Casimir forces in

solid-state systems.
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The study of non-equilibrium Casimir forces represents an emerging direction in the

explorations of physical effects induced by quantum and thermal fluctuations [1–9]. In the

standard configuration for the study of non-equilibrium Casimir forces, one considers two

bodies maintained at different temperatures, and studies the forces that are generated by the

quantum and thermal fluctuations in each of the bodies. This is in contrast to the equilibrium

Casimir forces that have been extensively studied [10–21] since the pioneering works of

Casimir [22] and Liftshitz [23], where the bodies are maintained at the same temperature.

The non-equilibrium situation creates fundamentally different physical effects in fluctuation-

induced forces. For example, whereas the equilibrium Casimir forces between two bodies are

almost always attractive except with unusual geometries [24, 25] or material systems [26, 27],

it has been shown theoretically that even with regular material systems and geometries the

non-equilibrium force can be repulsive, and may provide stable equilibrium points [1, 2].

From a practical point of view, having a repulsive interaction is important in nanoelec-

tromechanical systems for preventing the collapse of nanostructures [20, 28]. In addition,

moving away from equilibrium points to a new dimension in controlling fluctuation-induced

forces. For example, In the non-equilibrium case one can control the force by changing the

temperature gradient.

In spite of the importance of non-equilibrium Casimir forces for fundamental science and

practical applications, observation of such forces has proved to be quite challenging. At

small separations, the fluctuation force is dominated by its equilibrium component. To ob-

serve non-equilibrium effect, the distance needs to be at least comparable to the thermal

wavelength. At such distance, the magnitude of the total fluctuation force however becomes

quite small, which presents a significant experimental difficulty. As a result, the only ex-

isting observations of such forces were carried out on atomic systems [9]. There have not

been any experiments on non-equilibrium forces in solid-state systems that are important

for practical applications. Moreover, as has been pointed out in Ref. [3], to observe a re-

pulsive interaction between a metallic sphere and a metallic substrate requires a very large

temperature difference of more than 600 K, and moreover the repulsion occurs only at a

relatively large micron-scale distances. And yet for nanomechanical applications it would

be far more attractive to be able to achieve repulsive interaction at nanoscale.

Motivated by the goal to harness the fluctuation-induced forces, in this Letter we pro-

pose a class of non-equilibrium Casimir forces that occurs between two bodies possessing
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different chemical potential for photons. When a semiconductor is under an external voltage

bias, the electromagnetic fluctuations of the semiconductor can acquire a non-zero chemical

potential proportional to the applied voltage [29–32]. Here we consider two semiconductors

subject to different voltages, and show that the control of such external voltage provides a

powerful mechanism to harness the fluctuation-induced forces. We show that in this geom-

etry, the non-equilibrium force exceeds the equilibrium component even when the spacing

is at nanoscale, and thus in this case, the non-equilibrium Casimir force is sufficiently large

to facilitate experimental observations. In addition, we show that the forces between the

bodies can become repulsive with modest contrast in chemical potentials even at nanoscale

dimension. This represents a capability to achieve repulsion that is beyond what has been

possible in standard temperature-based non-equilibrium Casimir forces.

The Casimi-Lifshitz forces arise from the quantum and thermal fluctuations of the system.

In a semiconductor under external bias V maintained at temperature T , for the angular

frequencies above and below the bandgap, the correlations of the fluctuation currents inside

the body are assumed to have the following form [31–34]

〈jα(r, ω)j∗β(r′, ω′)〉 =
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(1a)

(1b)

where ω and ω′ are the angular frequencies, ~ is the reduced Planck constant, kB is the

Boltzmann constant, α and β label the directions of polarization, r and r′ are position

vectors and δ(ω − ω′) is the Dirac delta function, ωg is the bandgap angular frequency. For

angular frequencies above the bandgap, the current-current correlation is dependent of the

external bias V on the semiconductor p-n junction. While for angular frequencies below the

bandgap, the correlation function reduces to a more commonly used form with V = 0, as is

shown in Eq. 1b. For such a semiconductor, both Eqs. 1a and 1b can be separated into a

T -independent term that describes the zero-point quantum fluctuation, and a T -dependent

term that describes the thermal fluctuation.
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FIG. 1. (a) Configuration of a system consisting of a sphere and a semi-infinite plate. The sphere

has radius r and the distance between the bottom of the sphere and the plate is d. (b) An external

bias Vp is applied on the p-n junction in the semiconductor plate. (c) An external bias Vs is applied

on the p-n junction in the semiconductor sphere.

The Casimir force is obtained by calculating the Maxwell stress tensor induced by above-

bandgap and below-bandgap fluctuations. From Eq. 1a, by applying the external bias V ,

one can thus control the contribution to the non-equilibrium Casimir forces from the above-

bandgap radiation. To demonstrate the effects created by an external bias, in this Letter, we

consider the sphere-plate geometry since such configuration is commonly used in experiments

[35, 36] and has been numerically computed by using proximity force approximation [37] or

exact calculations using scattering theory [2, 3, 38–41]. As is shown in Fig. 1 (a), the system

contains a sphere with radius r and a semi-infinite plate, and the distance from the bottom

of the sphere to the plate is d. Throughout the paper, we denote the sphere as s and the

plate as p in super or subscripts. We denote the temperatures of the sphere, the plate and

the environment as Ts, Tp and Tenv, respectively.

In Figs. 1 (b) and (c), we consider two scenarios of using an external bias to control the

non-equilibrium Casimir force. In Fig. 1 (b), we consider the case when the plate is made of

a semiconductor, and a bias is applied to contacts at P+ and N+ regions. In the presence
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of the bias Vp, using the scattering theory formalism as developed in [3] and noting that

the only change in the formalism is the replacement of the equilibrium photon occupation

number by a non-equilibrium one, the total force acting on the sphere Fs is

Fs = F(s,eq)(Tenv) +
[
Fs
p(Tp, Vp)− Fs

p(Tenv)
]+

+
[
Fs
p(Tp)− Fs

p(Tenv)
]−

+ [Fs
s(Ts)− Fs

s(Tenv)] .

(2)

The first term describes the equilibrium force and the remaining terms describe the non-

equilibrium forces. In the remaining terms, the superscript of a force term represents the

body where the force is exerted upon, and the subscript represents the fluctuating sources

that generate such force. For example, Fs
p corresponds to the force on the sphere, due to

the fluctuations in the plate. The second term in Eq. 2 describes the contribution to the

non-equilibrium Casimir force from the above-bandgap radiation (denoted using superscript

“+”), and is controlled by Vp. The third term in Eq. 2 represents the contribution from

the sub-bangap radiation (denoted using superscript “−”). The last term describes the

contribution from the thermal fluctuations in the sphere because of the difference between

Ts and Tenv. In Fig. 1 (c), we consider an alternative case where the sphere is subject to an

external bias Vs applied to contacts at its P+ and N+ regions. In this case, the total force

on the sphere is

Fs = F(s,eq)(Tenv) +
[
Fs
p(Tp)− Fs

p(Tenv)
]

+ [Fs
s(Ts, Vs)− Fs

s(Tenv)]
+ + [Fs

s(Ts)− Fs
s(Tenv)]

− .

(3)

With Vp = 0 or Vs = 0, Eq. 2 or 3 reproduce the standard formula for non-equilibrium

Casimir forces, respectively. The explicit form of various terms in Eqs. 2 and 3 are provided

in Supplementary Material.

Eqs. 2 and 3 are applicable to the general non-equilibrium case, where there can be

temperature differences for the bodies and the environments, as well as voltage difference

between the bodies. For the rest of the paper, to highlight the effect of the voltage difference,

we will consider only the case where Ts = Tp = Tenv ≡ T . In such a case, Eqs. 2 and 3 are

simplified to:

Fs = F(s,eq) +
[
Fs
p(Vp)− Fs

p

]+
, (4)

and

Fs = F(s,eq) + [Fs
s(Vs)− Fs

s]
+ . (5)
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In Eqs. 4 and 5, as well as for the rest of the paper, the dependency on T is now implicit

since all bodies have the same temperature. Note that in this case, the only contribution to

the non-equilibrium force comes from radiation above the band gap energy.

Using Eqs. 4 and 5, we perform numerically exact calculations on the systems shown in

Figs. 1 (b) and (c), and compute the equilibrium Casimir force and non-equilibrium Casimir

force separately. Throughout the paper, we set T = 300 K. For the equilibrium force,

i.e. F(s,eq), following Ref. [39], we perform Wick rotation when integrating over the angular

frequencies. The non-equilibrium forces in Eqs. 2 and 3 are obtained using the trace formula

introduced in [3] which relates the forces to the traces of the appropriate field correlators.

In the numerical calculations, to ensure convergence, we use the criteria given in [42] in the

summation over different angular momentum channels.

Since in the far field the Casmir force can be viewed as a result of radiative pressure [43],

one would prefer to use a material with good light emitting property. Moreover, motivated

by experiments with sphere-plate geometry that typically measure the forces on the sphere

[35, 36], we will be primarily interested in the force on the sphere. To ensure absorption of

the photons emitted from the plate, we use a semiconductor with a slightly smaller bandgap

as the material for the sphere. In our calculations, we choose GaAs as the semiconductor for

the plate and InP for the sphere. The bandgap of GaAs is 1.42 eV at 300 K, while InP has

a bandgap of 1.34 eV. The dielectric functions for GaAs and InP for the angular frequencies

above the bandgap are obtained from [44]. For sub-bandgap dielectric function, we use

Lorentz-Drude model with the form of ε(ω) = ε∞(ω2 − ω2
L + iγω)/(ω2 − ω2

T + iγω) to take

into account the contributions from phonon-polaritons. For GaAs, ωT and ωL correspond to

energies of 0.0333 eV, 0.0362 eV, respectively and ε∞ = 11.0, γ = 4.52×1011 rad/s [44]. For

InP, ωT and ωL correspond to energies of 0.0377 eV, 0.0428 eV, respectively and ε∞ = 9.61

and γ = 6.59× 1011 rad/s [44]. The radius of the sphere r is fixed to be 1 µm.

We first consider the configuration in Fig. 1 (b). We plot the equilibrium Casimir force

Fs,eq, the non-equilibrium Casimir force ∆Fs
p = [Fs

p(Vp) − Fs
p]

+, and the total force on the

sphere Fs in the presence of bias Vp = 1.36 V as a function of d from 10 nm to 5 µm in Fig. 2

(a) in blue, green and red curves, respectively. We define the force to be positive when it is

attractive. For this system, the equilibrium component, F(s,eq), is always attractive. At small

d, the equilibrium component dominates and the total force is attractive. As d increases, the

equilibrium component decreases rapidly. At d ≥ 50 nm, the non-equilibrium component
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FIG. 2. (a) The equilibrium Casimir force Fs,eq, the non-equilibrium Casimir force ∆Fsp =

[Fsp(Vp)−Fsp]
+ and the total force on the sphere Fs for the configuration of Fig. 1 (b) as a function

of d from 10 nm to 5 µm when Vp = 1.36 V. The dot dashed horizontal black line corresponds to

|Fs| = 0. (b)-(e) the total force on the sphere Fs as a function of the external bias Vp for various

d values shown in the legend. The dotted-dashed horizontal black line corresponds to |Fs| = 0.

starts to dominate, and the overall force becomes repulsive. At larger d, in the far-field

limit, the total force comes entirely from its non-equilibrium component, which can also be

interpreted as radiation pressure [43], and as a result the total force becomes independent

of d. Therefore in this system, one can observe non-equilibrium force and repulsion at nano-

scale. This is in contrast with previous works on non-equilibrium Casimir force based on

temperature gradient where repulsion is achieved at micron-scale [2].

For this system, the non-equilibrium force is strongly influenced by the applied bias Vp.

In Fig. 2 (c), we plot the total force as a function of applied bias when the spacing is fixed at

d = 50 nm. When Vp is small compared to the bandgap, the total force is dominated by its
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equilibrium component, and thus is attractive. However, when the external bias approaches

the bandgap voltage, the non-equilibrium Casimir force is significantly enhanced, and at Vp ≥

1.35 V, it dominates over the equilibrium Casimir force and results in repulsion. We further

plots the total force on the sphere as a function of external bias for d = 10 nm, 100 nm, 1µm

in Figs. 2 (b), (d) and (e), respectively. In all these cases, strong deviation of the total force

from its equilibrium components occurs only when the voltage is close to the band gap. At

d = 10 nm, the total force remains attractive for the bias range considered. At d = 100 nm

and 1 µm, we observe the transition from attraction to repulsion as the voltage increases, and

the transition occurs at a smaller voltage for larger d. In this system, repulsions are easily

achieved at an external bias that is easily achievable experimentally. This is in contrast

with previous works on non-equilibrium Casimir force based on temperature gradient where

a large temperature difference is needed to achieve repulsion [2, 3].

The results above is for the configuration of Fig. 1 (b) where we apply an external

bias on the plate. In contrast, we now instead consider the configuration in Fig. 1 (c)

where an external voltage is applied to the sphere. In Fig. 3 (a), we plot the total forces

acting on the sphere as d varies from 10 nm to 5 µm when a voltage of Vs = 1.26 V is

applied on the sphere. For small separations, the equilibrium component dominates and

the total force is attractive. For larger d, we observe an oscillating behavior of the total

force. Mathematically, the oscillation arises from the third term in Eq. 3, which describes

the self-force on the sphere, i.e. the force on the sphere due to the current fluctuations in

the sphere. Physically, Such oscillations originates from the interference of the two wave

components emitted from the sphere. One of these components is the emission towards the

plate, which is then reflected from the plate. The other component is the emission in the

direction away from the plate. In contrast to the case in Fig. 2 (a) where exhibits only

one unstable equilibrium point, here the oscillation results in multiple equilibrium points

where the total force is zero. These equilibrium points can be either stable or unstable as

shown in Fig. 3 (a). The existence of the stable equilibrium points is a distinct feature of

the non-equilibrium force for the configuration of Fig. 1 (c). Similar oscillation has been

previously noted in the non-equilibrium force generated by temperature gradient [2]. In our

case it is controlled by voltage rather than temperature gradient.

We further examine the dependence of the total force on Vs in Figs. 3 (b)-(e) for four

different d values. For the cases d = 10 nm and 20 nm, as shown in Fig. 3 (b), the increase
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FIG. 3. (a) Total force on the sphere as a function of d for Vs = 1.26 V, for case (c) in Fig. 1.

The dotted-dashed horizontal black line corresponds to |Fs| = 0. Two unstable equilibrium points

for are labeled using squares, and two stable equilibrium points are labeled using circles. (b)-(e)

the total force on the sphere Fs as a function of the external bias Vs for various d values shown in

the legend. The dotted-dashed horizontal black lines in (d) and (e) correspond to |Fs| = 0.

of the voltage enhances the attraction of the sphere and the plate. This is in strong contrast

with the case considered in Fig. 2. On the other hand, for the cases of d = 1.5 µm and

2 µm (Figs. 3 (d) and (e)), as Vs increases, the total force on the sphere becomes repulsive

for large Vs. Due to the interference effects in the self-force of the sphere, this configuration

exhibits a rich set of effects in the non-equilibrium forces as we vary either the voltage or

the gap size.

In the results above, for ease of exact numerical calculations, we have chosen a relatively

small sphere with a radius of 1 µm. Larger force is expected for a larger sphere. In our con-
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figuration, for a sphere radius of 5 µm, repulsive force of 1.93×10−12 N can be achieved with

a gap size of 50 nm, and with a voltage of 1.36 V applied on the plate, as can be estimated

using the proximity force approximation that has been shown to be accurate for sphere of

this size in this near-field regime [39]. Forces of such a magnitude is readily detectable with

the current experimental techniques for the measurement of Casimir forces [45]. To summa-

rize, we have introduced a new class of non-equilibrium Casimir forces, where the deviation

from equilibrium is achieved by applying external voltages to semiconductors to create a

non-zero chemical potential for photons. The use of such a chemical potential should sig-

nificantly simplify the quest for observing and harnessing non-equilibrium Casimir forces in

solid-state systems.
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[2] M. Krüger, T. Emig, G. Bimonte, and M. Kardar, Europhys. Lett. 95, 21002 (2011).
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[6] G. Bimonte, T. Emig, M. Krüger, and M. Kardar, Phys. Rev. A 84, 042503 (2011).

[7] G. Bimonte, Phys. Rev. A 92, 032116 (2015).

[8] R. Messina and M. Antezza, Europhys. Lett. 95, 61002 (2011).

[9] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell,

Phys. Rev. Lett. 98, 063201 (2007).

[10] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827

(2009).

[11] F. Chen, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. Lett. 90,

160404 (2003).

[12] B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. D 72, 085009 (2005).

[13] S. A. Ellingsen, I. Brevik, J. S. Høye, and K. A. Milton, Phys. Rev. E 78, 021117 (2008).

10

http://dx.doi.org/10.1103/PhysRevLett.106.210404
http://dx.doi.org/10.1209/0295-5075/95/21002
http://dx.doi.org/ 10.1103/PhysRevB.86.115423
http://dx.doi.org/10.1103/PhysRevLett.95.113202
http://dx.doi.org/10.1103/PhysRevLett.97.223203
http://dx.doi.org/10.1103/PhysRevLett.97.223203
http://dx.doi.org/10.1103/PhysRevA.84.042503
http://dx.doi.org/10.1103/PhysRevA.92.032116
http://stacks.iop.org/0295-5075/95/i=6/a=61002
http://dx.doi.org/ 10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/PhysRevLett.90.160404
http://dx.doi.org/10.1103/PhysRevLett.90.160404
http://dx.doi.org/10.1103/PhysRevD.72.085009
http://dx.doi.org/10.1103/PhysRevE.78.021117


[14] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).

[15] U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549 (1998).

[16] A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K. Lamoreaux, Nat. Phys. 7, 230 (2011).

[17] A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nat. Photon. 5, 211 (2011).

[18] A. W. Rodriguez, D. Woolf, A. P. McCauley, F. Capasso, J. D. Joannopoulos, and S. G.

Johnson, Phys. Rev. Lett. 105, 060401 (2010).

[19] J. N. Munday and F. Capasso, Phys. Rev. A 75, 060102 (2007).

[20] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, Science 291, 1941

(2001).

[21] M. Lisanti, D. Iannuzzi, and F. Capasso, Proc. Natl. Acad. Sci. U. S. A. 102, 11989 (2005).

[22] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

[23] E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

[24] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, Phys. Rev.

Lett. 105, 090403 (2010).

[25] K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami, I. Brevik, S. A. Ellingsen, S. Y.

Buhmann, and S. Scheel, Phys. Rev. A 91, 042510 (2015).

[26] F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 76,

035338 (2007).

[27] M. Dou, F. Lou, M. Boström, I. Brevik, and C. Persson, Phys. Rev. B 89, 201407 (2014).

[28] E. Buks and M. L. Roukes, Nature 419, 119 (2002).

[29] P. Wurfel, J. Phys. C 15, 3967 (1982).

[30] P. Berdahl, J. Appl. Phys. 58, 1369 (1985).

[31] K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, Phys. Rev. B 91, 134301 (2015).

[32] K. Chen, P. Santhanam, and S. Fan, Phys. Rev. Applied 6, 024014 (2016).

[33] S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge

Research Center, Bedford, MA, 1959).

[34] C. H. Henry and R. F. Kazarinov, Rev. Mod. Phys. 68, 801 (1996).

[35] C.-C. Chang, A. A. Banishev, R. Castillo-Garza, G. L. Klimchitskaya, V. M. Mostepanenko,

and U. Mohideen, Phys. Rev. B 85, 165443 (2012).

[36] H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. M. Mansfield, and C. S. Pai, Phys.

Rev. Lett. 101, 030401 (2008).

11

http://dx.doi.org/10.1103/PhysRevLett.78.5
http://dx.doi.org/10.1103/PhysRevLett.81.4549
http://dx.doi.org/10.1038/nphys1909
http://www.nature.com/nphoton/journal/v5/n4/abs/nphoton.2011.39.html
http://dx.doi.org/ 10.1103/PhysRevLett.105.060401
http://dx.doi.org/10.1103/PhysRevA.75.060102
http://dx.doi.org/ 10.1126/science.1057984
http://dx.doi.org/ 10.1126/science.1057984
http://dx.doi.org/10.1073/pnas.0505614102
http://dx.doi.org/ 10.1103/PhysRevLett.105.090403
http://dx.doi.org/ 10.1103/PhysRevLett.105.090403
http://dx.doi.org/10.1103/PhysRevA.91.042510
http://dx.doi.org/10.1103/PhysRevB.76.035338
http://dx.doi.org/10.1103/PhysRevB.76.035338
http://dx.doi.org/ 10.1103/PhysRevB.89.201407
http://dx.doi.org/10.1038/419119a
http://stacks.iop.org/0022-3719/15/i=18/a=012
http://dx.doi.org/http://dx.doi.org/10.1063/1.336309
http://dx.doi.org/ 10.1103/PhysRevB.91.134301
http://dx.doi.org/10.1103/PhysRevApplied.6.024014
http://dx.doi.org/10.1103/RevModPhys.68.801
http://dx.doi.org/10.1103/PhysRevB.85.165443
http://dx.doi.org/ 10.1103/PhysRevLett.101.030401
http://dx.doi.org/ 10.1103/PhysRevLett.101.030401


[37] A. Canaguier-Durand, P. A. M. Neto, A. Lambrecht, and S. Reynaud, Phys. Rev. Lett. 104,

040403 (2010).

[38] P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Phys. Rev. A 78, 012115 (2008).

[39] R. Zandi, T. Emig, and U. Mohideen, Phys. Rev. B 81, 195423 (2010).

[40] O. Kenneth and I. Klich, Phys. Rev. B 78, 014103 (2008).

[41] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. D 80, 085021 (2009).

[42] C. R. Otey and S. Fan, Phys. Rev. B 84, 245431 (2011).

[43] P. W. Milonni, R. J. Cook, and M. E. Goggin, Phys. Rev. A 38, 1621 (1988).

[44] E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

[45] G. L. Klimchitskaya, A. Roy, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A 60, 3487

(1999).

12

http://dx.doi.org/10.1103/PhysRevLett.104.040403
http://dx.doi.org/10.1103/PhysRevLett.104.040403
http://dx.doi.org/10.1103/PhysRevA.78.012115
http://dx.doi.org/10.1103/PhysRevB.81.195423
http://dx.doi.org/10.1103/PhysRevB.78.014103
http://dx.doi.org/ 10.1103/PhysRevD.80.085021
http://dx.doi.org/10.1103/PhysRevB.84.245431
http://dx.doi.org/10.1103/PhysRevA.38.1621
http://dx.doi.org/10.1103/PhysRevA.60.3487
http://dx.doi.org/10.1103/PhysRevA.60.3487

	Non-equilibrium Casimir force with a non-zero chemical potential for photons
	Abstract
	References


