
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Parity Anomaly and Spin Transmutation in Quantum Spin
Hall Josephson Junctions

Yang Peng, Yuval Vinkler-Aviv, Piet W. Brouwer, Leonid I. Glazman, and Felix von Oppen
Phys. Rev. Lett. 117, 267001 — Published 23 December 2016

DOI: 10.1103/PhysRevLett.117.267001

http://dx.doi.org/10.1103/PhysRevLett.117.267001


Parity anomaly and spin transmutation in quantum spin Hall Josephson junctions

Yang Peng,1 Yuval Vinkler-Aviv,1 Piet W. Brouwer,1 Leonid I. Glazman,2 and Felix von Oppen1

1Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Department of Physics, Yale University, New Haven, Connecticut 06520, USA

We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic
impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of
impurity and spin-Hall edge alternates between half-integer and integer values when the supercon-
ducting phase difference across the junction advances by 2π. This leads to characteristic differences
in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase
differences, for which time-reserval symmetry is preserved. We discuss the resulting 8π-periodic (or
Z4) fractional Josephson effect in the context of recent experiments.

Introduction.—The fractional Josephson effect [1–3]
constitutes one of the most striking effects heralding
topological superconductivity [4, 5]. In Josephson junc-
tions of conventional superconductors, the Josephson
current is carried by Cooper pairs and is 2π periodic in
the phase difference applied to the junction. When the
junction connects topological superconductors [6–9], the
coupling of Majorana bound states across the junction
allows a Josephson current to flow by coherent transfer
of single electrons, resulting in 4π periodicity in the phase
difference. Robust 4π periodicity requires that time-
reversal symmetry be broken through proximity coupling
to a magnetic insulator or an applied magnetic field [6].
A fractional Josephson effect can occur in time-reversal-
symmetric junctions as a consequence of electron-electron
interactions [10, 11]. In the limit of strong interactions,
this 8π-periodic effect can be understood in terms of do-
main walls carrying Z4 parafermions, enabling tunneling
of e/2 quasiparticles between the superconductors.

Recent experiments on superconductor – quantum spin
Hall – superconductor junctions show intriguing evidence
for 4π-periodic Josephson currents. One experiment
probes Shapiro steps and shows that the first Shapiro
step is absent [12]. A second experiment reports that
the Josephson radiation emitted by a biased junction is
also consistent with 4π periodicity [13]. These results are
surprising as both experiments were performed without
explicitly breaking time-reversal symmetry so that basic
theory would predict a dissipative 2π-periodic behavior
when neglecting electron-electron interactions, or an 8π-
periodic behavior when taking interactions into account.

These expectations are based on considering pristine
quantum spin Hall Josephson junctions with a fully
gapped bulk and a single helical channel propagating
along its edges. Density modulations in actual quan-
tum spin Hall samples are widely believed to induce pud-
dles of electrons in addition to the helical edge channels
[14]. When these puddles host an odd number of elec-
trons, charging effects turn them into magnetic impuri-
ties which are exchange coupled to the helical edge chan-
nels. In this paper, we discuss the fractional Josephson
effect in realistic quantum spin Hall Josephson junctions

which include such magnetic impurities.

The effects of magnetic impurities on quantum spin
Hall edge channels have been intensively studied in
the absence of superconductivity [15–18]. In the high-
temperature limit, a magnetic impurity induces backscat-
tering between the Kramers pair of helical edge channels
and thus deviations from a quantized conductance in a
two-terminal measurement. As the temperature is low-
ered, the impurity spin is increasingly Kondo screened by
the helical edge channel and perfect conductance quan-
tization is recovered when the temperature is low com-
pared to the Kondo temperature TK . In the presence of
superconductivity, the Kondo effect is quenched by the
superconducting gap ∆ so that one may expect that mag-
netic impurities field more prominent consequences [19].
Here, we assume that TK � ∆ so that we can safely
neglect the effects of Kondo screening.

We find that magnetic impurities alter the behavior
of quantum spin Hall Josephson junctions qualitatively.
The Josephson current becomes 8π periodic, replacing
the dissipative 2π-periodic effect in pristine junctions.
This can be viewed as a variant of the Z4 Josephson ef-
fect. Indeed, unlike its classical counterpart, coupling
to a quantum spin preserves time-reversal symmetry and
interactions are effectively included through the local-
moment formation. This is quite reminiscent of the in-
gredients of the Z4 fractional Josephson effect. Thus, our
results show that this remarkable effect is considerably
more generic than one might have previously thought.

Moreover, the present setting emphasizes a remark-
able mechanism for producing an 8π-periodic fractional
Josephson effect. As a result of the fermion parity
anomaly [3], the spin of the helical edge effectively
changes by ~/2 when the superconducting phase differ-
ence is advanced by 2π. This adiabatically transmutes
the combined spin of helical edge and magnetic impurity
between half-integer and integer values, with their char-
acteristically different behavior in the presence of time-
reversal symmetry as described by the Kramers theorem.

Quantum spin Hall Josephson junctions.—We first re-
view the Andreev spectrum of pristine quantum spin Hall
Josephson junctions [3]. Consider a quantum spin Hall
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Figure 1. Andreev spectrum of quantum spin Hall Joseph-
son junctions of different lengths. (a) L = 0; (b) L = 0
in the presence of backscattering due to a Zeeman field; (c)
L = 0.8~v/∆; (d) L = (π/2)~v/∆; (e) L = 2~v/∆. The green
curves correspond to Andreev states consisting of a superpo-
sition of an up-spin electron and an Andreev-reflected hole.
The orange curves are for the particle-hole conjugated states.

edge with edge modes counterpropagating at velocity v,
placed in between two superconductors at a distance L
whose phases differ by φ. This junction is described by
the Bogoliubov-de Gennes Hamiltonian

H = vpσzτz + ∆(x)τ+ + ∆∗(x)τ−, (1)

where σj and τj are Pauli matrices in spin and Nambu
(particle-hole) space, respectively. The subgap spectrum
as a function of φ is shown in Fig. 1.

For short junctions (L→ 0), the subgap spectrum con-
tains a particle-hole symmetric pair of Andreev states [see
Fig. 1(a)]. Both Andreev levels emanate from and merge
into the quasiparticle continuum. An applied bias voltage
V advances the phase difference at a rate φ̇ = 2eV/~ and
leads to the generation of continuum quasiparticles above
the superconducting gap. These can diffuse away from
the junction which causes dissipation. Thus, the junc-
tion exhibits an ac Josephson effect with conventional
frequency and energy dissipation rate (2∆)(φ̇/2π).

The dissipative nature of the Josephson effect is closely
related to the absence of backscattering. When introduc-
ing backscattering into the junction by breaking time-
reversal symmetry through an applied magnetic field or
proximity coupling to a magnetic insulator, the Andreev
levels no longer merge with the quasiparticle continuum
[see Fig. 1(b)]. Now, the quasiparticles generated by the
advancing phase difference remain at subgap energies and
localized at the junction, which quenches dissipation in
the small-voltage limit [6]. Moreover, the ac Josephson
effect occurs at half the conventional frequency, i.e., at
eV/~, as fermion number parity is conserved. Indeed, the
level crossing at φ = π is protected by fermion number
parity so that the individual Andreev levels are 4π peri-
odic in the phase difference φ. This can be viewed as a
consequence of the fermion parity anomaly (see [20] for
more details): As a result of the quantum spin Hall ef-
fect, the parity of the fermion number of the edge changes
when the superconducting phase difference is advanced
by 2π, requiring a phase change of 4π for a full period.

Additional subgap levels appear for longer junctions,
see Figs. 1(c) and (d). The level crossings in these spec-

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2

E
/∆

φ/π
0 0.5 1 1.5 2

(a)

0

2

4

Fo
ur

ie
r

Sp
ec

tr
um

(×
1
04

)

0
2
4
6
8

10

0.0 0.5 1.0
π/Tφ

Energy

〈Sz〉

(b)

Jαβ = 0 Jαβ 6= 0

Figure 2. (a) Generic many-body spectrum for the quantum
spin Hall Josephson junction (L = (π/2)~v/∆) without (left)
and with coupling to the impurity spin (right; for parameters
see Ref. [20]). The red solid and blue dashed curves indi-
cate even and odd fermion number parity, respectively. The
discontinuity in fermion number parity at φ = π originates
from the merging of Andreev levels with the continuum, see
Fig. 1(d). The crossings at and near φ = π (black circles)
are between states of opposite fermion number parity. The
crossings between states with even fermion number parity at
φ = 0 and 2π (red dashed circles) are protected by time rever-
sal. The arrows indicate the impurity-spin polarization along
the z-axis. (b) Fourier transforms of the many-body ground
state energy (equivalently: Josephson current) (upper panel)
and of the expectation value of the impurity spin 〈Sz〉 (lower
panel) as a function of the phase difference φ. The 8π-periodic
harmonics are indicated by the vertical dashed lines.

tra are not only controlled by fermion number parity,
but also by time-reversal symmetry. While time rever-
sal is broken by the phase difference across the junction
(causing a nonzero Josephson current to flow), it remains
unbroken when φ is an integer multiple of π.

Coupling to magnetic impurity.—We now consider the
coupling of the edge channel to a magnetic impurity
with spin S. Generically, disorder in conjunction with
the strong spin-orbit coupling will remove any symme-
try other than time reversal which we assume to be bro-
ken only by the applied superconducting phase difference.
Thus, we focus on the general Hamiltonian

HS =
∑
α,β

JαβŜ
ασ̂β(0) +

∑
α

Dα(Ŝα)2 (2)

for the impurity spin Ŝ. The first term describes the ex-
change coupling between the impurity spin and the he-
lical edge, with σ̂α(0) =

∑
i,j ψ

†
i (0)(σα)ijψj(0) denoting

the local spin density of the edge at the position x = 0 of
the impurity. The operator ψi(x) annihilates an electron
with spin projection i at position x. The second term de-
scribes a single-ion anisotropy of the impurity spin with
strengths Dα. Time reversal implies that the exchange
couplings are real, but otherwise arbitrary.

Josephson effect.—Analyzing the Josephson effect of
the quantum spin Hall edge channel coupled to the mag-
netic impurity is greatly simplified by the discrete na-
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ture of the subgap spectrum. For definiteness, con-
sider an intermediate-length junction whose subgap spec-
trum has exactly two positive-energy subgap states εn(φ)
(n = 1, 2) at all values of the phase difference as in Fig.
1(d). (This convenient choice is used in our numerical
illustrations but not essential for our results.) Then,
we can analyze the low-energy (many-body) spectrum of
the junction in the finite-dimensional space of low-energy
states spanned by the product of occupation states of
the two subgap Bogoliubov quasiparticles (yielding four
basis states) and the 2S + 1 spin states of the spin-S
impurity. The low-energy many-body spectrum effec-
tively decouples from the quasiparticle continuum when
the Kondo temperature is small compared to the super-
conducting gap [21]. The corresponding Hamiltonian is
readily derived by retaining only the contributions of the
two positive-energy subgap Bogoliubov operators γn to
the edge-state electron operators (see [20] for details). In
this limit, the total Hamiltonian can be approximated as
H = He +HS with

He =
∑
n

εn(φ)

(
γ†nγn −

1

2

)
(3)

the Hamiltonian of the bare edge.

Consider coupling the quantum spin Hall edge states
to a spin-1/2 impurity. Figure 2(a) shows the many-
body spectrum of He in Eq. (3), i.e., of the bare edge
(left panel), and of H = He + HS for a generic choice
of exchange couplings Jαβ (right panel). The spectrum
of the coupled edge is best understood by analyzing the
nature of the degeneracies at phase differences equal to
integer multiples of π. The degeneracies at and near
φ = π are protected by fermion number parity. Here,
level crossings occur between states with even and odd
occupations of the Bogoliubov quasiparticles of the edge.
In contrast, the level crossings at φ = 0 and φ = 2π occur
between states of the same fermion number parity and are
Kramers degeneracies reflecting time-reversal symmetry.

In the present system, a Kramers degeneracy appears
when the Bogoliubov quasiparticles γn of the edge are
either both empty or both occupied, leading to a half-
integer spin of the combined system of edge and impu-
rity. Specifically, the lower (higher) energy crossing in
Fig. 2(a) corresponds to states in which the quasiparti-
cle states are both empty (occupied). Away from φ = 0
and 2π, time reversal is broken and the Kramers degen-
eracies are lifted. This interpretation is corroborated by
further restricting the Hamiltonian H for small φ to the
low-energy subspace of empty quasiparticle states. In
this limit, the spin density σ̂α(0) of the edge only has a
nonzero z component σ̂z(0) = −εφ/[2~v(1 + κL)2] and
the Hamiltonian simplifies to

H ' −
∑
α

BαSα + const (4)

with the effective Zeeman field B = [εφ/2~v(1 +
κL)2]

∑
α Jαzêα. Here, we use the subgap energy ε =

∆ cos(εL/(~v)) and κ =
√

∆2 − ε2/(~v).
The four nondegenerate states at intermediate energies

for φ = 0 [see Fig. 2(a)] have overall single occupation
of the quasiparticle states, leading to a combined edge-
impurity system with integer spin. Unlike in the odd-
integer spin case, time reversal does not enforce a degen-
eracy of the many-body spectrum in this case. Writing
the Hamiltonian for small φ in this subspace using the
basis | ↑〉 = γ†1|gs〉 and | ↓〉 = γ†2|gs〉 (with the junc-
tion ground state |gs〉 such that γ1|gs〉 = γ2|gs〉 = 0) for
the states of the edge (with corresponding Pauli matrices
ρα), we find the effective Hamiltonian

H ' κ

2(1 + κL)

[∑
α

Jα+S
αρ+ + h.c.

]
(5)

Generically, this Hamiltonian has no degeneracies.
With this understanding, the many-body spectrum in

Fig. 2(a) reveals a remarkable fact: Adiabatically advanc-
ing the superconducting phase difference by 2π connects
the low-energy Kramers doublet at φ = 0 to states of the
totally lifted spin quartet at φ = 2π. Thus, adiabatic
quantum dynamics changes the total spin of the edge-
impurity system between half-integer and integer values.
This spin transmutation is a direct consequence of the
fermion parity anomaly (see also [20]): As the phase dif-
ference changes by 2π, the fermion number parity of the
edge changes by virtue of the quantum spin Hall effect.
Consequently, also the spin of the edge changes by ~/2.
This change in spin has important consequences for the
periodicity of the Josephson effect. Indeed, adiabatically
following the energy levels in Fig. 2(a), we find that they
are 8π periodic, corresponding to an ac Josephson fre-
quency of eV/2~. Due to the spin transmutation, the
system passes through successive Kramers degeneracies
only after advancing the superconducting phase differ-
ence by 4π, requiring a phase change of 8π for completing
a full period. Note that starting with the ground state
at φ = 0, the many-body state remains well below the
quasiparticle continuum for all φ, so that the ac Joseph-
son effect is nondissipative at a sufficiently small bias.

The polarization of the impurity spin varies with the
superconducting phase difference in an 8π-periodic man-
ner. When adiabatically varying φ, the spin orientation
remains unchanged at the Kramers crossings and flips
in the vicinity of the avoided crossings where the edge-
impurity system is in an integer-spin state. This variation
of the spin with φ is illustrated in Fig. 2(a).

These results for S = 1/2 impurities persist for higher-
spin impurities. Results for an S = 1 impurity are shown
in Fig. 3. Panel (d) shows results for generic values of
Jαβ and Dα. Unlike in the S = 1/2 case, the low-energy
states now have integer spin and are nondegenerate, while
the intermediate-energy states have half-integer spin and
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Figure 3. Many-body spectrum for a quantum spin Hall edge
coupled to an S = 1 impurity (for explicit parameters, see
[20]). The red solid and blue dashed curves correspond to
many-body states with even and odd fermion number parity,
respectively. Spectra correspond to (a) vanishing single-ion
anisotropy, (b) easy-plane anisotropy Dz > 0, (c) easy-axis
anisotropy Dz < 0, and (d) generic single-ion anisotropy with
Dx, Dy, Dz 6= 0. The degeneracies at φ = 2π (blue dashed
circles) and their partners at φ = 0 are Kramers degenera-
cies. Red circles highlight degeneracies which are lifted by
generic single-ion anisotropy. The number of arrows indicates
subsequent 2π periods when adiabatically advancing φ.

are Kramers degenerate at φ = 0 and 2π. Nevertheless,
the 8π periodicity remains intact.

Different periodicities occur for nongeneric Dα. With-
out single-ion anisotropy [see Fig. 3(a)], the spectrum
does not decouple from the quasiparticle continuum and
the Josephson effect becomes dissipative and 2π peri-
odic. The same results for easy-plane anisotropy, with
one of the single-ion anisotropies being positive and the
others equal to zero, see Fig. 3(b). Finally, easy-axis
anisotropy makes the junction nondissipative and 4π pe-
riodic as shown in Fig. 3(c).

Discussion.—We find that generically, coupling to a
magnetic impurity makes the Josephson effect in quan-
tum spin Hall systems 8π periodic, corresponding to a
frequency eV/2~ of the ac Josephson effect. The 8π peri-
odicity relies only on time-reversal symmetry, the parity
anomaly, and the absence of fine tuning such as the ab-
sence of interactions or the presence of spin conservation.
It can be thought of as resulting from the coupling of Z4

parafermions across the junction.

This general conclusion requires two comments. First,
the 8π-periodic Josephson current may not be the dom-
inant Fourier component in experiment. Indeed, as is
evident from Fig. 2, the 8π-periodic cycle consists of two
rather similar 4π sections. The splitting between the two
sections is controlled by the exchange coupling. When
the exchange splitting is small compared to the super-

Josephson
effect

S = 0, B = 0 any S, B 6= 0 S 6= 0, B = 0

dc 2π 2π 2π
ac diss., 2π non-diss., 4π non-diss., 8π

Table I. Generic Josephson periodicities of a quantum-spin-
Hall-based junction coupled to a spin-S impurity/quantum
dot, with or without Zeeman field B. The dc periodicities as-
sume full equilibration including fermion number parity. The
ac results assume that fermion number parity is conserved on
the relevant time scale. Note that the 8π-periodic ac current
may have a large 4π-periodic component, while the periodic-
ity of the dot spin is robustly 8π, see Figs. 2(b) and (c).

conducting gap, the dominant Fourier component of the
Josephson current is 4π periodic. This is shown in Fig.
2(b), together with the Fourier components of the impu-
rity spin polarization which has a dominant 8π-periodic
harmonic. It is interesting to note that this result for the
Josephson current is different from the realization of the
Z4 Josephson effect discussed by Zhang and Kane [10]
which has a dominant 8π-periodic Fourier component.

Second, our results so far consider only the electronic
system. Coupling to other degrees of freedom such as
phonons or the electromagnetic environment introduces
inelastic relaxation processes which may crucially affect
the experimentally observed periodicity. While relax-
ation between states of opposite fermion number par-
ity may be slow, parity-conserving relaxation processes
should be considerably more efficient. Observation of
the 8π periodicity requires that the latter relaxation pro-
cesses be slow compared to the time in which the 8π cycle
is traversed. Indeed, the two 4π sections of the 8π cycle
involve states of the same fermion number parity. Thus,
the system always remains in the lower-energy state if
the cycle is traversed slowly on the time scale of parity-
conserving relaxation processes. This makes the observed
Josephson effect 4π rather than 8π periodic.

It is interesting to compare these results to the recent
experiments on quantum spin Hall junctions which ob-
serve Shapiro steps and Josephson radiation consistent
with 4π periodicity [12, 13]. Our results provide an in-
triguing scenario that is consistent with these observa-
tions. However, this is not the only explanation of a
4π-periodic Josephson effect in this system. An alterna-
tive scenario considers relaxation processes in a pristine
quantum spin Hall junction. Consider an intermediate-
length junction with at least two positive-energy Andreev
states for any phase difference. When both of these An-
dreev states are occupied, the two quasiparticles can re-
lax inelastically by recombining into a Cooper pair. Two
positive-energy quasiparticles are created every time the
phase difference advances by 4π. Thus, if recombination
into a Cooper pair is an efficient process, one would also
observe a 4π-periodic Josephson effect. It is an inter-
esting problem to devise experiments which distinguish
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between these alternative scenarios. Such efforts may
benefit from the considerable recent progress in directly
probing the subgap spectrum of Josephson junctions by
microwave spectroscopy and switching current measure-
ments [23–27].

Finally, our results suggest probing the Josephson ef-
fect of a quantum spin Hall edge which is intentionally
coupled to a quantum dot. Such a setup would allow one
to tune the quantum dot in and out of the local moment
regime and to control the exchange coupling between dot
and edge. In addition to the Josephson periodicity, such
a setup might provide access to the 8π periodicity of the
impurity spin (see Table I) and would be a promising
setup for detecting Z4 parafermions.
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