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We study quantum Hall states on surfaces with conical singularities. We show that the electronic
fluid at the cone tip possesses an intrinsic angular momentum, which is due solely to the gravitational
anomaly. We also show that quantum Hall states behave as conformal primaries near singular
points, with a conformal dimension equal to the angular momentum. Finally, we argue that the
gravitational anomaly and conformal dimension determine the fine structure of the electronic density
at the conical point. The singularities emerge as quasi-particles with spin and exchange statistics
arising from adiabatically braiding conical singularities. Thus, the gravitational anomaly, which
appears as a finite size correction on smooth surfaces, dominates geometric transport on singular
surfaces.
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Introduction In order to fully characterize the quantum
Hall (QH) effect one must understand not only electro-
magnetic response, but also geometric response, that is
the response of a QH state to varying spatial geometry
[1–13]. Traditionally, the former has been more accessi-
ble and has thus received greater attention, indeed even
giving the effect its name. However, with recent experi-
mental advances in synthetic condensed matter systems
and the observation of the QHE in lattice systems such
as graphene, there is a real possibility of probing geo-
metric response in the near future. The characteristics
probed by the geometric response include the anomalous
or odd viscosity, first proposed in [1], and the gravita-
tional anomaly [6, 7, 9], a property only recently appre-
ciated as being central to understanding QH physics.

Since the works of Laughlin [14, 15], it has been un-
derstood that magnetic field singularities (i.e. flux tubes)
probe essential features of quantum Hall states. The re-
sponse of QH states to flux tubes has two facets: (i)
the quantized Hall conductance is observed as the charge
transfer resulting from an adiabatic change of magnetic
flux threading a punctured disk [14]; (ii) magnetic sin-
gularities can be seen as point-like coherent states, or
quasi-particles, which transport a fractional charge [15]
and posses a fractional spin, and statistics [16].

In this paper we show that in a similar manner further
subtle properties of QH states are revealed by geomet-
ric singularities, overlooked in earlier studies. Geometric
singularities are point-like concentrations of curvature,
also known as conical singularities. The curvature could
be extrinsic when electrons are placed on a curved sur-
face, or intrinsic, created by various means such as me-
chanical stress of the material, an optical and acoustic
environment, etc.

We will show that adiabatically threading a curva-
ture flux through a punctured disk leads to charge and
momentum transport. This is the geometric transport,
which is characterized by transport coefficients that are
quantized on QH plateaus in addition to the Hall con-

ductance. Whereas Hall conductance arises from inte-
ger cohomology, the geometric transport arises from an
adiabatic connection with rational cohomology [1–3, 13].
They and the Hall conductance are independent charac-
teristics of QH states.

Similar to the relation of magnetic singularities to
quasi-holes, the geometric singularities can be interpreted
as coherent states, making them the geometric analogue
to Laughlin quasi-holes. We compute their charge, spin
and exchange statistics.

Our arguments stem from the observation that a QH
state near the geometric singularity possesses an emer-
gent conformal symmetry. In general, QH-states do not
show conformal symmetry. They feature a scale - the
magnetic length - and do not transform conformally, as
two-point functions of the density exhibit exponential de-
cay. However, the states appear to be conformal in the
vicinity of a singularity. The emergent conformal sym-
metry and the universal physical properties it governs are
new features of QHE which we address in this paper.

Geometric transport [1–5, 7–9, 11, 13], driven by an
adiabatic change of the spatial geometry, is a fundamen-
tal probe of quantum liquids with topological character-
ization, complementary to the more familiar electromag-
netic response. The singular geometry highlights the ge-
ometric properties of the state and serves as an ideal
setting to probe these properties.

The gravitational anomaly is central to understand-
ing the geometry of topological states [6–8, 10–13, 17],
encoding the geometric characterization of states in the
central charge cH . We say more about this fundamental
kinetic coefficient below.

On a smooth surface the gravitational anomaly is typ-
ically overshadowed by the dominant electromagnetic
properties. We demonstrate that conical singularities
bring geometric transport to the fore. There, the grav-
itational anomaly is a dominant effect with measurable
consequences. We show that a small fluid parcel near the
singularity spins with an intensive angular momentum,
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independent of the parcel volume and proportional to
central charge. Moreover, near the singularity, the state
is a conformal primary of the conformal field theory with
the central charge −cH . Its conformal dimension is equal
to the angular momentum in units of ~.

Conical singularities are not as exotic as they may
seem, and occur naturally in several experimental set-
tings. Disclination defects in a regular lattice can be
described by metrics with conical singularities [18], and
occur generically in graphene [19]. In a recent experi-
ment, synthetic photonic Landau levels on a cone were
created in an optical resonator [20].

A conical singularity of order α < 1 is an isolated point
ξ0 on the surface with a concentration of curvature

R(ξ) = R0(ξ) + 4παδ(ξ − ξ0), (1)

where R0 is the background curvature, a smooth func-
tion describing the curvature away from the singular-
ity. Locally, if α > 0 the singularity is equivalent to
an embedded cone with the apex angle 2 arcsin γ, where
2πγ = 2π(1−α) is the cone angle (see Fig.2), and 2πα is
the deficit. There is no isometric embedding for α < 0,
which requires glueing multiple surfaces to obtain an ex-
cess rather than a deficit angle.

An especially interesting case occurs when γ or 1/γ is
an integer. In this case the surface is also an orbifold, a
surface quotiented by a discrete group of automorphisms.
Then the conical singularities arise as fixed points of the
group action [21].

Most of the formulas below are valid regardless of the
sign of α in (1), although braiding of singularities on
orbifolds is more involved (see [22, 23] for a similar issue
in the context of CFT). We do not address it here.

To emphasize the difference between geometric and
magnetic singularities we consider both simultaneously:
a magnetic flux a threaded through the conical singular-
ity α

eB(ξ) = eB0(ξ)− 2π~ aδ(ξ − ξ0), (2)

where B0 > 0 is a smooth background magnetic field.
We express the results through fundamental geometric

transport coefficients introduced in Ref.[13]. They can be
defined through linear response in the planar geometry to
a smooth inhomogeneous magnetic field and curvature.
In such background the density and momentum of the
ground state read

ρ̄ =
ν

2π~
eB +

µH
4π

R, P = ∇×
(
−µH

4π~
eB+

cH
96π

R
)
, (3)

with the curvature (1) and magnetic field (2) having a =
α = 0. For the j-spin Laughlin states with filling fraction
ν the coefficients are [24]

cH = 1− 12(µ2
H/ν), µH =

1

2
(1− 2jν), (4)

Lastly, before listing our main results, we comment on
the inclusion of spin j. For the definition of spin see

[8] and eq. (15) in the text. As discussed in [8, 13, 17]
Laughlin states are characterized not only by the fill-
ing fraction but also by the spin. Spin does not enter
electromagnetic transport. Nor does it enter local bulk
correlation functions, such as the static structure factor.
On a closed surface spin is coupled to the curvature of
the surface and reflects an ambiguity of lifting the sys-
tem from the plane to a curved surface. To the best
of our knowledge, there is no experimental or numerical
evidence that determines the spin in QH materials, nor
are there any arguments that j = 0, as it silently as-
sumed in earlier papers. For this reason, we keep spin
as a parameter since it affects the physics of the QHE.
For example, at the filling ν = 1/3, the central charge
vanishes at j = 1, and j = 2. The central charge equals 1
if j = 1

2ν , and equals −2 if ν = 1 and j = 0 or 1.

Main results a. Conformal dimensions. In [7, 17] (see
also [25]) it was shown that the magnetic singularity (2)
is a conformal primary with the dimension

ha =
1

2
a (2µH − aν) , (5)

In this paper, we extend this result and show that the
geometric singularity is also a conformal primary. In this
case, its dimension is controlled solely the gravitational
anomaly

∆α =
cH
24

(γ−1 − γ), γ = 1− α. (6)

Formula (6) is familiar in conformal field theory: −∆α

(mind the opposite sign!) is the dimension of a vertex
operator of a branch point in CFT [22, 23]. The same
formula enters the finite size correction to the free energy
of critical systems on a conical surface [26] and enters the
formula for the spectral determinant of the Laplace op-
erator (e.g., [27, 28]). These are not coincidences. In the
neighborhood of a singularity, QH states and CFT share
the same mathematics, but are by no means identical:
the conformal dimension of QH states is opposite to that
in CFT with the central charge given by (4).
b.Gyration and spin The conformal dimension deter-

mines transport near the singularity. A small piece of the
fluid gyrates around the apex with an intensive angular
momentum equal to the conformal dimension (6)

Lα = ~∆α. (7)

A reason for this is that the angular momentum of the
gyrating fluid gives the spin of the singularity. Since the
state is holomorphic, its spin is identical to the dimen-
sion.

The angular momentum of a combined magnetic and
geometric singularity is additive

Lα,a = ~
(

1

γ
ha + ∆α

)
. (8)

c. Braiding singularities Just like Laughlin quasi-holes,
conical singularities can be braided. Braiding two quasi-
holes with charges a1 and a2 yields the phase Φ12 =
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π(νa1a2). This result has been known since the early
days of the QHE [16] and is referred to as exchange statis-
tics.

Braiding conical singularities is more involved. We
show that the braiding phase of two cones of order α1

and α2 are determined exclusively by the central charge

Φ12 = −π cH
24
α1α2

(
1

γ1
+

1

γ2

)
=

π (α2∆α1
+ α1∆α2

) + π
cH
12
α1α2. (9)

The first two terms in (9) are the phase acquired by a
particle with spin ∆α1 (or ∆α2) going half way around a
conical singularity with deficit angle 2πα2 (or α1). The
last term cH

12 α1α2 is the exchange statistics. On an orb-
ifold, where either γ or 1/γ is an integer, the phase for

identical cones is Φ12 = π cH12 (
√
n− 1/

√
n)

2
. It appears

rational, even in the case of the integer QHE.
The formulae (6-9) are our main results: the braiding

statistics of singularities and the angular momentum of
the electronic fluid around a cone are solely due to the
gravitational anomaly. Further results on transport and
the fine structure of the density near a singularity are
described below.

d.Moment of inertia The conformal dimension can be
read off from the electronic density profile ρ(r) at the
singularity. Near the cone point, the density changes
abruptly on the scale of the magnetic length and is sin-
gular in the limit of vanishing magnetic length. We plot
ρ(r) for the integer case in Fig. 1 using exact formulas
of Supplemental Material [29]. It is thus properly char-
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Figure 1. Density of the integer QH state on a cone. Left:
γ = 1/10 (blue), 1/5 (yellow), 1/2 (green) with spin j = 0.
Right: γ = 1/10, with spin j = 0 (blue), 1/2 (yellow), 1
(green).

acterized by the moments

m2n =

∫
(r2/2l2)n(〈ρ(r)〉 − ρ∞)dV. (10)

Here, ρ∞ = ν(e/h)B0 is the mean density away from the

singularity, l =
√

~/(eB0) is the magnetic length, r is the
Euclidean distance to the singularity, and dV = 2πγrdr
is the volume element.

The first moment, the ‘charge’ m0, follows from the
generalized Středa formula [30] (see also [8])- the number
of particles in a patch of area dV is saturated by ρ̄dV ,

where ρ̄ is given by (3). Hence,

m0 =

∫
(ρ̄(r)− ρ∞) dV = −νa+ µHα. (11)

The cone accumulates electrons if µHα > 0.
This result (for j = 0) is known (see, e.g., [9, 31, 32])

and there is a recent claim that the “charge” of the cone
has been observed experimentally [20]. However, the
gravitational anomaly does not enter here. It emerges
in the moment of inertia m2. We will see that

m2 = (1− j)m0 + γ−1ha + ∆α, (12)

where ha and ∆α are the dimensions (5) and (6). We
check this formula against the integer QH effect in the
Supplemental Material.

The measurement of the second moment would consti-
tute an observation of the gravitational anomaly. It is
experimentally accessible within the framework of [20].

This relation between the moment of inertia (12) and
the angular momentum (7) is expected. In QH states,
the positions of particles determine their velocity. Con-
sequently, the density determines the momentum of the
flow [32–34]. In the next section we recall its origin. The
relation reads

∇× P = −eB0(ρ− ρ̄) +
~
2

(1− j)∆ρ. (13)

Here ∇× = εij∇j , where ∇j is a covariant derivative, ∆
is the Laplace-Beltrami operator, and ρ̄ is given by (3).
The formula for the charge of the cone (11) is a conse-
quence of (13). Away from the singularity the momentum
rapidly vanishes. As a result the integral

∫
(∇ × P) dV

vanishes. Then (13) yields (11).
With the help of this formula we express the angular

momentum L =
∫

(ξ × P) dV in terms of the density

L=(eB0)

∫
r2

2
(ρ− ρ̄)dV + ~(j − 1)

∫
ρdV. (14)

The first term in this formula is the diamagnetic effect of
a fluid gyrating in a magnetic field, while the second term
is the paramagnetic contribution. The angular momen-
tum of the singularities is obtained from the difference
between L at finite α, and L for α = 0. Since ρ∞ is the
density for α = 0, (10) implies that

Lα,a = ~(m2 + (j − 1)m0).

Then (12) prompts (8). It remains to compute (5,6).

e. Transport at the singularity. Since the work of
Laughlin [14] it was known that an adiabatic change of
the magnetic flux a(t) in (2) threading a disk causes a
radial electric current flowing outward I = −νeȧ.

Adiabatic change of the cone angle α(t) also yields a
current. It follows from (11) that the outward current is
I = eṁ0.

More interestingly, both evolving flux and the cone an-
gle accelerate the gyration of the fluid, and produce a
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torque, the rate of change of the angular momentum L̇.
From (7) it follows that the torque is proportional to the
rate of change of the conformal dimension. We collect
the formulae for electric and geometric transport

e-transport: current = −eνȧ, torque = ~ḣa,
g-transport: current = eµH α̇, torque = ~∆̇α.

These formulas are the geometric transport in a nutshell.

QH states on a Riemann surface Before turning to
singular surfaces, we recall some formulas about Laughlin
states on a Riemann surface [7, 12].

The most compact form of the state appears in locally
chosen complex coordinates (z, z̄), where the metric is
conformal ds2 = eφ|dz|2. In these coordinates the genus-
0 unnormalized state for integer inverse filling ν−1 reads

Ψ=

N∏
1≤i<k

(zi−zk)β exp

N∑
i=1

1

2
[Q(zi, z̄i)−jφ(zi, z̄i)], (15)

where Q is the magnetic potential defined by−~∆Q =
2eB and β = ν−1.

While the wave function (15) explicitly depends on the
choice of coordinates, the normalization factor

Z[Q,φ] =

∫
|Ψ|2

∏
i

exp [φ(zi, z̄i)]d
2zi, (16)

does not. It is an invariant functional depending on the
geometry of the surface, and in particular on the posi-
tions and orders of the singularities. Eq.(16) encodes the
correlations and the transport properties of the state and
is therefore referred to as the generating functional. For
example, a variation of Z over the magnetic potential Q
at a fixed conformal factor φ is the particle density

〈ρ〉 dV = (δ logZ/δQ) d2z.

In [13] it was shown that the variation over the metric at
a fixed volume is the angular momentum

L = −~
∫

(δ logZ/δφ) d2z. (17)

Now we can obtain the relation (14). It follows from
the observation that the magnetic potential and the con-
formal factor appear in (15,16) almost on equal footing,
besides that under a variation over the conformal factor,
the magnetic potential varies as −~∆δQ = 2δφ(eB) [35].

QH state on a cone A surface has a conical singular-
ity of order α if in the neighborhood of the conical point
z0 the conformal factor behaves as

φ ∼ −α log |z − z0|2. (18)

Locally a cone is thought of as a wedge of a plane with
the deficit angle 2πα, whose sides are isometrically glued
together (see Fig. 2).

Figure 2. A cone with deficit angle 2πα in ξ coordinates with
restricted argument and Euclidian metric (Left), mapped to
a plane z by (19) with a metric (20) (Middle), embedded in
3D (Right)

We denote the complex coordinate on the plane as ξ
and the cone angle 2πγ = 2π(1 − α). The wedge is a
domain 0 ≤ arg ξ < 2πγ with a Euclidean metric ds2 =
|dξ|2. A singular conformal map

z → ξ(z) = γ−1(z − z0)γ (19)

maps the wedge to the entire complex plane. The map in-
troduces the complex coordinates (z, z̄) where the metric
is conformal

ds2 = |z − z0|−2α|dz|2. (20)

Specifically, in the neighborhood of the conical singu-
larity the conformal factor in (15) behaves as (18). A
singularity in the wave function (15) can be interpreted
as an insertion of the ‘vertex operator’ at the marked
point of the surface. Then the generating functional
Zα is the expectation value of this operator. We will
show that this operator is a conformal primary. This
means that under a dilatation, the functional transforms
as −δ logZα = ∆αδφ, where ∆α is the conformal dimen-
sion. Eq.(17) identifies the conformal dimension with the
angular momentum (7).

Conformal Ward identity We obtain the dimensions
(5,6) and the statistics (9) by employing the conformal
Ward identity (CWI), a framework developed in [7, 36].
We sketch the major steps in the Supplemental Material.
The CWI connects the momentum P to the conformal
stress tensor

T =
ν

2
(∂zϕ)

2 − µH∂2zϕ, (21)

where ϕ = −β
∑
i log |z − zi|2 −Q. The CWI reads

1

~

∫
i〈Pz′〉 − µH

2π ∂z′(eB0)

z − z′
dVz′ = 〈T 〉. (22)

A Ward identity of this kind is commonly used in CFT.
The angular momentum follows from the Ward identity

for dilatations, which is contained in (22). Multiplying
(22) by zdz

2πi and integrating over the boundary of a sin-

gular patch yields ~−1
∫

Im(z〈P 〉)dV = res(z 〈T 〉). The
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LHS of this equation is proportional to the angular mo-
mentum since

∫
Im(z〈P 〉)dV = −γ

∫
(ξ×〈P 〉) dV = −γL,

so that

γL = ~ res(z〈T 〉). (23)

Gravitational Anomaly In the Supplemental Material

we show that to leading order in N , the conformal stress
tensor equals

〈T 〉 =
ν

2
(〈∂zϕ〉)2 − µH∂2z 〈ϕ〉+

1

12
S[φ], (24)

where S[φ] = − 1
2 (∂zφ)2 + ∂2zφ is the Schwarzian of the

metric. The last term is the effect of the gravitational
anomaly [7].

Geometric singularity We evaluate the stress tensor
in the leading approximation ρ ≈ ρ̄. In this approxima-
tion the first two terms in (24) are proportional to the
Schwarzian which effectively change the coefficient of the
anomalous (last) term in (24)

〈T 〉 =
cH
12
S[φ]. (25)

We compute the singular part of the stress tensor by
evaluating the Schwarzian on the singular metric (18),
which is equal to the Schwarzian derivative of the singular

conformal map (19), S[φ] = ξ′′′

ξ′ −
3
2

(
ξ′′

ξ′

)2
= α(2−α)

2z2 .

Thus,

〈T 〉 =
cH
24

α(2− α)

z2
. (26)

Using (23), we arrive at our main result (7).

Magnetic singularity The stress tensor receives the
contribution from the magnetic potential of the flux tube

Qa = 2a log |z|

〈T 〉 = −ν
2

(∂zQa)2 − µH∂2zQa =
ha
z2
, (27)

where ha is the conformal dimension (5).
When the flux tube sits on top of a conical singularity,

the stress tensor is the sum of (27) and (26) 〈T 〉 =
(γ∆α + ha)z−2. This implies the relation (8).

Exchange statistics Now consider adiabatically ex-
changing two singularities. The state will acquire a
phase. Since the state is a holomorphic function of sin-
gularity position, its holonomy is encoded in the nor-
malization factor [37]. The exchange statistics is then
Φ12 = (i/2)

∫
C
d logZ, where contour C traces the adia-

batic path of the singularity. The adiabatic connection
d logZ is a differential in the configuration space of sin-
gularities, and has a pole when two singularities coincide.
Therefore, the exchange phase is the residue of the pole
Φ12 = −π res[d logZ].

For conical singularities, the residue arises entirely
from the gravitational anomaly (see Supplemental Ma-
terials). Explicitly

d logZ =
cH
24
α1α2

(
1

γ1
+

1

γ2

)
dz12
z12

, (28)

where z12 is the difference in position of two singulari-
ties in the z-plane. It prompts the formula (9) for the
exchange statistics.

Spectral determinant We comment that the formula
(28) describes the holonomy of the spectral determinant
of the Laplacian (see, e.g., [28]).

d logZ =
cH
2
d log [Det(−∆)]

This is consistent with the result of Refs.[8, 13, 17] where
it was found that the generating functional Z is propor-

tional to [Det(−∆)]
cH/2.
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