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We discuss the use of atom interferometry as a tool to search for Dark Matter (DM) composed of
virialized ultra-light fields (VULFs). Previous work on VULF DM detection using accelerometers
has considered the possibility of equivalence principle violating effects whereby gradients in the dark
matter field can directly produce relative accelerations between media of differing composition. In
atom interferometers, we find that time-varying phase signals induced by coherent oscillations of
DM fields can also arise due to changes in the atom rest mass that can occur between light-pulses
throughout the interferometer sequence as well as changes in the Earth’s gravitational field. We
estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can
be probed due to these new effects.

Introduction–. Multiple observations in precision cos-
mology indicate that only 5% of the total energy den-
sity of the universe resides in ordinary (visible) mat-
ter [1, 2], with the rest of the balance coming from
dark matter (DM) and dark energy. So far all the DM
signatures have been purely gravitational and the con-
nection of DM to microscopic physics remains a mys-
tery. The main outstanding questions are: the nature
of DM constituents and if they interact with baryonic
matter non-gravitationally. Can DM objects be detected
in laboratory-scale experiments? In this paper, we ex-
plore the feasibility of using a precision measurement
tool, atomic interferometry [3], for DM searches.

There is a vast range of DM models: even if DM
is composed of elementary particles, the DM particle
masses mDM could span a vast 40-order of magnitude
mass range, with the lower limit set by the inverse halo
size of smallest galaxies, and the upper limit comes from
requiring that these particles do not form black holes.
Considering this range of possibilities, an experimental
observation of non-gravitational coupling is crucial for
further progress. Particle physics experiments (e.g., LUX
[4]) search for DM particles mDM that are comparable to
the masses of elementary particles, ∼ 1− 103 GeV of the
Standard Model (SM), covering only a narrow sliver of
possibilities.

Here, in contrast to particle physics DM searches, we
focus on ultralight fields. Recently there were a num-
ber of proposals for searches for such fields using pre-
cision tools of atomic, molecular, and optical physics.
Among such proposals are magnetometry [5, 6], atomic
clocks [7, 8], accelerometers [9], bar detectors [10], and
laser interferometry [9, 11]. Depending on the initial
field configuration at early cosmological times, light fields
could lead to DM oscillations about the minimum of their
potential, or form stable spatial configurations due self-
interaction potentials. The former possibility leads to
fields oscillating at their Compton frequency and the lat-
ter to the formation of topological defects such as do-
main walls, strings and monopoles (“topological” DM
[7]). The properties of the oscillating virialized ultra-light
fields (VULFs [12]) have been discussed previously in the

context of axions [13, 14]. Notice, however, that axions
imply a specific coupling (portal) between the DM and
SM particles, while recent proposals considerably widen
the classes of possible portals.

We concentrate on effects of ultralight scalar bosonic
oscillating fields. Such fields, in addition to being the
DM candidates, in a certain range of coupling strengths
can solve the hierarchy problem [15]. We will focus on
the mass range 10−24eV . mφ . 1eV for the reasons
discussed in [12]. In the standard halo model, during the
galaxy formation, as such particles fall into the gravita-
tional potential, their velocity distribution in the galactic
reference frame becomes quasi-Maxwellian with the dis-
persion (virial) velocity vvir ≈ 10−3c. With the disper-
sion relation Eφ ≈ mφc

2 + mφv
2
φ/2, such fields primar-

ily oscillate at their Compton frequency ωφ = mφc
2/~,

(fφ = 2.4 × 1014 (mφ/eV) Hz) although the spectrum
is broadened due to their velocity distribution. The in-
dicated mass range maps into frequencies 10−10 Hz .
fφ . 1014 Hz. If the integration time is on the order
of a second, the lower range of the this frequency range
would lead to nearly static effects, while the upper range
leads to rapidly oscillating effects on the experimental
timescale.

Further, the number density n = ρDM/
(
mφc

2
)

is
given in terms of DM energy density in the Solar sys-
tem neighborhood ρDM ≈ 0.4 GeV/cm3, in the assump-
tion that the model saturates the DM energy density.
The virial velocity determines the de Broglie wavelength
λvir
φ = (2π~)/(mφvvir). The resulting mode occupation

number n
(
λvir
φ

)3

� 1 is macroscopic in the indicated

mass range and the bosonic field can be treated as being
classical,

φ(r, t) = φ0 cos (ωφt− kφ · r + · · · ) .

Here φ0 = ~
√

2ρDM/(mφc), the wave vector kφ =
mφvφ/~ is distributed isotropically in the galactic ref-
erence frame, 〈kφ〉 = 0, but in the Earth reference
frame moving with respect to the DM halo with ve-
locity v⊕ ≈ 10−3c, 〈kφ〉 = mφv⊕/~. Otherwise ran-
dom component of kφ persists over coherence lengths



2

lc = ~/(mφvvir) or coherence times τc = 1/(ωφv
2
vir/c

2)

corresponding to (c/vvir)
2 ∼ 106 field oscillations [12].

For the indicated mass range, 1023 cm & lc & 10−1 cm
and 1015 s & τc & 10−9 s. Notice that the field is coherent
over the Earth size if mφ . 10−11 eV, which is consistent
with the range of masses that atom interferometry is sen-
sitive to.

As to the DM-SM sector couplings, a systematic ap-
proach is that of the so-called phenomenological portals
[16], where the gauge-invariant operators of the SM fields
are coupled to the operators that contain DM fields. We
focus on the SM-DM interactions in the form of the linear
(n = 1) and quadratic scalar portals (n = 2)),

−Lint
n =

(√
~cφ
)n
×(

meψ̄eψe
Λnn,e

+
mpψ̄pψp

Λnn,p
− 1

4Λnn,γ
F 2
µν + . . .

)
. (1)

The terms inside the brackets of Eq. (1) are pieces from
the SM sector Lagrangian density. These pieces are
weighted with inverses of high-energy scales Λn,X which
parametrize unknown coupling constants. In particular,
me,p and ψe,p are electron and proton masses and fields,
and Fµν are the electromagnetic filed tensor components.

The main implication of the portals (1) are in modu-
lation of fermion masses and fundamental constants [7]

meff
f

mf
= 1 +

(√
~cφ(r, t)

)n
Λnn,f

;
αeff

α
≈ 1 +

(√
~cφ(r, t)

)n
Λnn,γ

.

(2)
Here α is the fine-structure constant. Similar renormal-
izations can be written for other SM couplings.

If the DM field exhibits spatial variations, as in Eq. 2,
the mass of particles will also acquire gradients, leading
to forces on test masses according to the gradient of the
field. These forces can in general violate the equivalence
principle (EP), and previous work [17, 18] has analyzed
the possibility of EP-violating forces due to the spatial
gradient of the DM field coupling differently to materials
with different constituents. As discussed in Ref. [18],
there are two ways in which this −∇mc2 force can gen-
erate a measurable signal in an accelerometer. First, a
relative acceleration between two spatially separated test
masses can be produced due to a difference in the DM
gradient at the location of each mass. This effect is typ-
ically suppressed by the length scale of variations of the
gradient 1/kφ. Second, composition-dependent relative
accelerations between two test masses can occur even if
they are co-located. This effect was discussed in detail in
Ref. [18] and we do not reconsider it here, especially due
to the fact that the effects of VULF-induced variations
in local gravity, as shown below, can be more important.

Indeed, Eq. (2) also implies that the atomic con-
stituents change their effective masses due to the DM-
SM couplings (1). Thereby we expect that the to-

tal atomic mass would also change ma → (1 +(√
~cφ(r, t)

)n
/Λnn,a)ma, either through the renormaliza-

tion of elementary constituents masses or coupling con-
stants. This will lead to the perturbation of trajectories
in light-pulse atom interferometers, as the mass of the
recoiling atoms differs for successive laser pulses. An-
other, more significant effect comes in the form of varia-
tion of the local Earth gravity g: when the DM field over-
laps with the Earth it makes it effectively heavier/lighter.
Then if an atom interferometer is operated as a gravime-
ter, it can effectively detect time-varying changes in g.
In this paper, we develop a theoretical framework for es-
timating the experimental signals in the form of phase
shifts arising in light-pulse atom interferometers due to
these effects. We find that several orders of magnitude of
unexplored phase space for light DM fields can be probed
due to these effects. A significant improvement is sim-
ply due to the fact that in Ref. [18] one measures the
gradient of φ which is independent of mφ, while our case
amounts to measuring the amplitude of φ which scales as
1/mφ and gets large at low mass scales.

Change in the Earth gravitational field – The interac-
tion Lagrangian (1) gives rise to the stress-energy tensor
that generates gravitational fields. While we have devel-
oped the full-scale formalism based on the Einstein field
equation, in the weak-field limit it amounts to modifica-
tion of the Earth-atom gravitational interaction through
the Earth mass renormalization. In particular, it effec-
tively changes gravitational field of the Earth g

∆gn
g

=
∆M⊕

M⊕

=

(
2ρDM~3

m2
φcΛ

2
n

)n/2
×

1

2(n−1)
cos(nωφt− nkφ · r + · · · ).

For n = 2, we absorbed the constant part into the con-
ventionally defined g.

Interferometer signals — To consider a concrete case,
we assume the acceleration g due to the Earth and the
mass m of atoms in the interferometer are varying sinu-
soidally in time as

g(t) = g0(1 + δg cos (ωt+ θ0)), (3)

m(t) = m0(1 + δm cos (ωt+ θ0)), (4)

where the amplitude of the fractional change in g and
the mass of the atom are denoted as δg and δm, respec-
tively, and ω = nωφ. The interferometer sequence we
consider is depicted in Fig. 1. The atoms are launched
upwards with a velocity vL. The first π/2 pulse splits the
atomic wave functions into two trajectories, with ~keff of
momentum added to the upwards path. This produces a
change in the atom’s velocity along the upper path equal
to the recoil velocity vR = ~keff/m. After time T , a π
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FIG. 1. Space time diagram for the Mach-Zehnder atom in-
terferometer. Atomic wave packets are split into a superposi-
tion state with differing momenta, reflected with a mirror (π)
pulse, and recombined with a final beam-splitter pulse. The
final population in state |1 > is given by (1 + cos(∆φ))/2.

pulse is applied, which imparts momentum -~keff to the
part of the atomic wave function along the upper path,
and momentum +~keff to the component of the atomic
wavefunction along the lower path. After another time
T a final π/2 pulse is applied and the population in the
interferometer is read out for atoms along, e.g., the lower
path. This population depends on the cosine of the rel-
ative phase acquired by the atoms as they have traveled
through the interferometer. The total phase shift can be
expressed in terms of three contributions, the propaga-
tion phase, laser phase, and separation phase:

∆φ = ∆φprop + ∆φlaser + ∆φsep. (5)

The propagation phase shift is proportional to the dif-
ference in the integral of the classical action along the
paths of the interferometer. We compute the laser phase
shift as ∆φlaser = keff(zi − z1l − z1u + z2l), where zi the
initial position of the atoms at the time of the first π/2
pulse, z1l and z1u are the positions of the lower and up-
per atomic trajectories at the time of the π pulse, and z2l

is the position of the lower trajectory at the time of the
second π/2 pulse. The separation phase is determined as
∆φsep = m

2~ (v2u − vR + v2l)(z2l − z2u), where vR is the
recoil velocity imparted in the final pulse, v2u and v2l

are the velocities of the upper and lower trajectories just
prior to the final pulse, and z2l and z2u are the positions
of the lower and upper trajectories at the time of the final
pulse, respectively.

Effect of VULF DM — We assume the laser wave-
length is kept fixed. (In fact it can change as well but gen-
erally by a different amount than the mass of the atom,
since it is generally stabilized with respect to a specific
atomic transition.) If the atomic mass has changed be-
tween the application of the first and second laser pulses,

the recoil velocity given to the atoms will be different
since

vR(t) = ~keff/m(t) ≈ ~keff

m0
(1− δm cos (ωt+ θ0)). (6)

Considering the effects of the time variation of the atomic
mass and of g, the result is the following, kept only to
1st order in δm and δg:

∆φ =− keffg0T
2 − δm

2g0keffT

ω
(sinωT − sin 2ωT )

+ [δg + 2δm]
g0keff

ω2
(1− 2 cosωT + cos 2ωT )

+ δm

[
keff(vL + vR/2)

ω

]
(2 sinωT − sin 2ωT ).

The phase in Eqs. (3) and (4) at the start of the inter-
ferometer sequence is in general unknown. Here we have
assumed the initial θ0 = 0 for simplicity, to illustrate the
amplitude with which the time varying contributions will
oscillate. The above expression is modified accordingly
for different values of θ0. In the low-frequency limit, when
the amplitude of the DM field φ0 becomes large, we can
expand taking ωT � 1, and find

∆φ ≈ −keffg0(1 + δg)T
2− δm

keff

ω
(vL + vR/2)(ωT )3. (7)

Here we do not include the direct acceleration resulting
from ∇m that would generally occur in a EP-violating,
composition-dependent way as discussed in previous lit-
erature [18], but only the indirect effects from the mass
of the atoms and the Earth oscillating with time at fre-
quency ω that have not been previously considered. In
Eq. (7), the terms appearing with δm are due to the time
variation in the atomic recoil velocity throughout the in-
terferometer sequence, while the terms appearing with δg
result from the variation of the Earth’s acceleration g.

To evaluate the phase shift, we take parameters T =
1.34 s, g0 = 9.8 m/s2, m0 = 1.44 × 10−25 kg for 87Rb,
vL = 10 m/s and keff = 200 × 1.6 × 107 m−1, by using
large momentum transfer (200-photon recoil) beamsplit-
ters [19–22]. Assuming 106 atoms, with shot-noise lim-
ited sensitivity, we can detect a phase of approximately
10−3 rad/shot. This yields an acceleration sensitivity at
the δg ∼ 2 × 10−13/

√
Hz level. In practice laser phase

noise and mirror vibrations limit the sensitivity of a sin-
gle atom interferometer to approximately the ng/

√
Hz

level [23–26].
To attain the ultimate sensitivity a pair of interferom-

eters can be used, in order to cancel out common-mode
effects from laser phase fluctuations and platform vibra-
tions [27, 28]. However, this generally suppresses the sig-
nal due to the common variations in the time varying ac-
celeration towards the Earth and rest mass of the atoms.
By using spatially separated interferometers, the magni-
tude of the time-varying acceleration from the Earth will
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produce a detectable time-varying but correlated relative
phase shift between the the interferometers, different due
to the gradient in the Earth’s gravitational field.

To estimate the sensitivity, we consider a setup with
two interferometers with a vertical separation of 1 km
which are interrogated with common lasers. We also con-
sider the case where the pair of interferometers is in low-
Earth orbit (LEO) vertically separated by 1000 km, at al-
titudes of 1000 km and 2000 km, respectively. The longer
baseline of the space-based approach facilitates a larger
difference in the Earth’s gravitational field between the
two interferometers. Similar arrangements of atomic in-
terferometers have been proposed for gravitational wave
searches [28–30], and it is possible such facilities could
also be adapted to perform DM searches. In these setups
we assume a common isotope, hence the DM differen-
tial phase shift results solely from the δg term, while δm
makes no contribution. Note any contribution from the
difference in the direct DM gradient ∇φ at the location
of the two interferometers is insignificant by comparison,
being suppressed by the length scale of variations of the
gradient 1/kφ.

In Fig. 2 we show bounds on the nucleon mass cou-
pling coefficient Λ1

n as defined in Eq. 2. Since the nucleon
mass is largely determined by ΛQCD, we can make a con-
nection with previous literature by also showing bounds
on the corresponding Higgs portal coupling coefficient b
defined in Ref. [18] where b = 9m2

h/2Λ1. Here mh = 125
GeV/c2 is the Higgs mass. We consider integration over
106 shots, and we assume the DM oscillation is coher-
ent over this time scale, which is reasonable for oscilla-
tion frequencies below 1 Hz. We include estimates at the
δg/g ∼ 2× 10−13/

√
Hz level of sensitivity (near-term) as

well as at the δg/g ∼ 2×10−17/
√

Hz level (future), which
may be possible with larger-momentum-transfer beam-
splitters, larger atom number (e.g. 108 atoms), and using
an entangled atom source [31]. We find that several or-
ders of magnitude improvement are possible, with signif-
icant improvement beyond the atom-interferometer pro-
jections presented in Ref. [18] at low frequencies in par-
ticular. This improvement is manifest since the field os-
cillation amplitude, φ0 =

√
2ρDM~/(mφc) becomes very

large for low mass mφ. The sensitivity does not continue
to improve for ω/2π < 10−6 Hz since we assume a maxi-
mal data set of 106 shots with integration time per shot of
order 1 s. We also find that this approach is competitive
with proposed searches based on atomic clocks [8].

Discussion — In sum, atom interferometry can be a
sensitive probe in searches for ultra-light scalar field dark
matter through not only direct accelerations of the atoms
produced by interactions with dark matter fields, but also
through the indirect effects of the inertial and gravita-
tional implications of the variations of the atomic masses
and the mass of the Earth. The method shows promise
to extend the search for ultra-light scalar field dark mat-
ter by several orders of magnitude using the sensitivity
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FIG. 2. Sensitivity in Higgs portal for n = 1. Previous ex-
perimental bounds [32–35] are shown as shaded yellow re-
gion, adapted from Ref. [18]. We include estimates at the

δg/g ∼ 2× 10−13/
√

Hz level of sensitivity (near-term) as well

as at the δg/g ∼ 2× 10−17/
√

Hz level (future).

of atom interferometers that is realistically achievable in
the near-term and farther future.
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