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To exploit a given physical system for quantum information processing, it is critical to understand the different
types of noise affecting quantum control. Distinguishing coherent and incoherent errors is extremely useful as
they can be reduced in different ways. Coherent errors are generally easier to reduce at the hardware level, e.g.
by improving calibration, whereas some sources of incoherent errors, e.g. T ∗2 processes, can be reduced by
engineering robust pulses. In this work, we illustrate how purity benchmarking and randomized benchmarking
can be used together to distinguish between coherent and incoherent errors and to quantify the reduction in
both of them due to using optimal control pulses and accounting for the transfer function in an electron spin
resonance system. We also prove that purity benchmarking provides bounds on the optimal fidelity and diamond
norm that can be achieved by correcting the coherent errors through improving calibration.

A key obstacle to realizing scalable quantum information
processing (QIP) is implementing quantum gates sufficiently
precisely so that errors can be detected and corrected [1–6].
This requires both the intrinsic noise and the noise in the con-
trol to be characterized. The combined noise can be com-
pletely characterized using either quantum process tomogra-
phy (QPT) [7, 8] or gate set tomography (GST) [9, 10]. How-
ever, these methods are time-consuming and scale exponen-
tially in the number of qubits.

Instead of completely characterizing a system, we can ef-
ficiently quantify how noisy the experimental operations are.
The most prominent method along these lines is randomized
benchmarking (RB) [12–17], which gives an efficient estimate
of the benchmarking error per gate (B-EPG) defined as

ε(E) = 1− F = 1−
∫

dψ 〈ψ|E(|ψ〉〈ψ|)|ψ〉, (1)

where E is the noise channel and the integral (the channel fi-
delity F ) is over all pure states |ψ〉 according to the Haar mea-
sure. However, the B-EPG is, by construction, insensitive to
many of the particular details of the noise mechanism. As
errors due to different noise mechanisms can be corrected in
different ways and have different impacts on QIP, understand-
ing the noise characteristics in quantum systems is of critical
importance.

Noise characteristics can be broadly grouped as either co-
herent (unitary) or incoherent (statistical). Coherent noise is
usually due to systematic control errors in, for example, im-
perfect rotation angles or axes [18, 19], which may be easier
to reduce than incoherent noise such as T1 and T2 processes.
The B-EPG for coherent noise accumulates quadratically with
the number of gates whereas incoherent noise accumulates
linearly. Furthermore, coherent and incoherent noises with

the same B-EPG may lead to dramatically different thresh-
olds as quantified by the worst-case error per gate (W-EPG),
also known as the diamond distance, [20]

ε� = 1
2 max

ψ
‖[E − I]⊗ I(ψ)‖1, (2)

where ‖A‖1 = Tr
√
A†A and I is the identity channel acting

on an ancillary system of the same size to account for the ef-
fect of the noise on entangled inputs. Therefore, identifying
whether the noise is primarily coherent or incoherent is essen-
tial for determining an appropriate error threshold when eval-
uating a physical system and for determining whether exper-
imental effort should prioritize improving calibration or sup-
pressing incoherent error processes.

Several approaches have been developed to provide more
information about the noise than just the B-EPG while re-
taining the advantages of RB [21–24]. In particular, purity
benchmarking (PB) [23] enables the quantification of the co-
herence of a noise process without assuming a specific noise
model, which can be used to obtain an improved estimate of
the W-EPG [25, 26], whereas the method of Ref. [24] detects
additive coherent errors under specific assumptions about the
noise model.

In this paper, we show that PB can be used to quantify the
best achievable B-EPG and W-EPG under optimal control for
single-qubit systems. We then test PB in a specific modal-
ity, namely, a solid-state electron spin resonance (ESR) sys-
tem. Bulk ESR samples consist of an ensemble of (nearly)
identical spins, which can mimic the behaviour of a fixed
number of qubits depending on the structure of the solid and
the species of the spins. ESR provides one path to scalable
QIP using techniques such as algorithmic cooling and dis-
tributed node quantum information processing [27], which are
viable because electron spins have larger thermal polarization
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and faster relaxation rates than nuclear spins, and hyperfine-
coupled nuclear spins can also be efficiently controlled using
ESR techniques [28–30]. The quantum control techniques de-
veloped in QIP are also very useful for modern ESR spec-
troscopy [31, 32]. Achieving high fidelity quantum control in
ESR is challenging due to the limited bandwidth of a con-
ventional microwave resonator. In this work, RB and PB
protocols are used to assess the control accuracy of an en-
semble single-qubit system. We demonstrate the reduction in
both the coherent and incoherent errors obtained by first us-
ing the transfer function of the microwave control system to
correct numerically-derived optimal control (OC) pulses [33]
and then using a spin-packet selection technique to effectively
reduce the inhomogeneous spectral broadening [34]. The low-
est values we obtained for B-EPG (ε) and the incoherent er-
ror (εin, defined below) for Clifford gates are 6.3× 10−3 and
5.4× 10−3, respectively.

The incoherent error per gate—The primary characteristic
of a coherent noise process is that it can be corrected by di-
rectly reversing the unitary process with perfect control. We
therefore define the incoherent error per gate (I-EPG) of a
noise channel E to be the optimal B-EPG that can be achieved
by correcting E with perfect unitary operations, that is,

εin(E) = min
U,V

ε(U ◦ E ◦ V) (3)

for any unitary operations U and V . For a general d-
dimensional system, the incoherent error satisfies

ε(E) ≥ εin(E) ≥ d− 1

d

[
1−

√
u(E)

]
, (4)

where the unitarity is [23]

u(E) =
d

d− 1

∫
dψTr[E(|ψ〉〈ψ| − 1

d1ld)]
2. (5)

We now show that the lower bound on the incoherent er-
ror in Eq. (4) is saturated to O[εin(E)2] in the single-qubit
case. Let Ej,k = Tr[σ†jE(σk)]/2 be the process matrix of E ,
where {σ0, σ1, σ2, σ3} = {1l2, σx, σy, σz}. The process ma-
trix of any completely-positive and trace-preserving (CPTP)
noise channel can be written in block form as

E =


 1 0

En Eu


 . (6)

The unitarity and B-EPG of E are

u(E) =
1

3
TrE†uEu

ε(E) =
1

6
Tr (1l3 − Eu) . (7)

Any single-qubit noise channel can be corrected to another
channel E ′ such that E ′u = Σ and En = (0, 0, λ)T for some λ
and some real diagonal Σ by applying suitable (perfect) uni-
tary operators [35], which leaves the unitarity unchanged, that

is, u(E) = u(E ′) = Tr Σ2. By Von Neumann’s trace inequal-
ity,

ε(E ′) ≤ ε(U ◦ E ◦ V) (8)

for any unitary operations U and V , so ε(E ′) = εin(E). Writ-
ing Σ = 1l3 − ε(E ′)δ where δ is nonnegative for any CPTP
map [36] and Tr δ = 6 from Eq. (7), we have

u(E) = 1− 2ε(E ′)
3

Tr δ +
ε(E ′)2

3
Tr δ2

= 1− 4ε(E ′) + (4 + c)ε(E ′)2, (9)

for a single qubit. The minimum and maximum values of
c subject to ε(E ′) ≤ 1/3, Tr δ = 6, and the CPTP con-
straints [17, 36] are 0 and 2, attained when δ = 21l3 and
δ1,1 = δ2,2 = 3 respectively. Therefore the incoherent er-
ror for a single qubit satisfies

εin(E) = ε(E ′) =
1

2

(
1−

√
u(E)

)
, (10)

to within εin(E)2/2 as claimed.
Now we consider the part of error that is removed by the

optimal unitary corrections. With E = U ◦ E ′ ◦ V and W =
V ◦ U , from Eq. (7) the B-EPG of E is

ε(E) =
1

6
Tr(1l3 − Σ) +

1

6
Tr(1l3 −Wu)

− 1

6
Tr(1l3 −Wu)(1l3 − Σ)

= εin(E) + ε(W) +O[εin(E)ε(W)] (11)

where the order of the higher-order term comes from Σ being
diagonal and the diagonal elements of a generic CPTP mapM
being 1−O(ε(M)) [17]. We can regard U and V as coherent
errors and so the B-EPG of the (composite) coherent error is

εcoh(E) = ε(W) = ε(E)− εin(E) +O(εin(E)ε(W)), (12)

which is also equivalent [to O(εin(E)ε(W))] to the B-EPG
removed by the optimal unitary corrections.

The I-EPG also provides an improved bound on the opti-
mal W-EPG ε�,opt that can be achieved by applying unitary
corrections. Let E ′u be the unital part of E ′, that is, the channel
such that E ′(A) = E ′u(A) + λσz TrA for all A ∈ C2×2. We
then have

E ′ ⊗ I(ρ) = E ′u ⊗ I(ρ) + λσz ⊗ Tr1 ρ (13)

where Tr1 ρ is the partial trace over the first system. By the tri-
angle inequality and submultiplicativity of the diamond norm,

ε�(E ′) ≤ ε�(E ′u) + |λ|max
ψ
‖Tr1 ψ‖1

≤ ε�(E ′u) +
√

2|λ|, (14)

where the maximization is achieved by any maximally entan-
gled state. As E ′u is a Pauli channel [11, 16], |λ| ≤ 3ε(E ′) and
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with a lower bound on the W-EPG in terms of the B-EPG [17],
we have

ε�,opt(E) = ε�(E ′) ∈ [ 32εin(E), ( 3
2 + 3

√
2)εin(E)]. (15)

Both these constraints are linear in εin(E) and so give reason-
able estimates as εin(E) decreases compared to the gap be-
tween the optimal scalings for the lower and upper bounds in
terms of ε(E) alone, which diverge by orders of magnitude as
ε(E) decreases [20].

Experimental Implementation—Our X-band pulsed ESR
spectrometer was custom-built for QIP experiments and in-
cludes arbitrary waveform generation and a loop-gap res-
onator for sub-millimeter sized samples that allows for rela-
tively broadband control [34]. For an ensemble single-qubit
system, we use a sample of gamma-irradiated fused quartz, a
paramagnetic sample in powder form where the primary de-
fect is a spin-1/2 unpaired electron at an oxygen vacancy [37],
with T1 ∼ 160 µs, T2 ∼ 30 µs, and T ∗2 ∼ 80 ns.

A pulse generated with an initial waveform W (f) in the
frequency-domain representation will be distorted to a new
waveform W ′(f) seen by the spins due to the system’s trans-
fer function T , which is the frequency-domain representa-
tion of the impulse response of the system [38, 39], so that
W ′ = T ·W where · denotes the point-wise product of T and
W . The transfer function includes contributions from the res-
onator’s transfer function and other imperfections in the pulse
generation and transmission. One method to correct W ′(f)
is to distort the initial waveform to be T −1 ·W . The accu-
racy of this method is limited by the accuracy with which T
can be determined. We measure T by detecting Rabi oscil-
lations of the electron spins as a function of the microwave
frequency [40]. This measured transfer function, denoted by
Tmeas, is then used to modify the input OC pulse so that the
distorted pulse seen by the spins will approximate the desired
waveform.

We use three OC pulses: π/2 and π rotations (denoted by
X90, X180, Y90 and Y180 for rotations around the x- and
y-axes respectively) and an identity operation (denoted by I).
The pulses are each 150 ns long and designed to be robust to
distributions of Larmor frequency and microwave (B1) field
that closely mimic the measured properties of the combined
system of our sample and resonator [40]. The design fidelity
of each pulse exceeds 99.7% when averaged over these dis-
tributions [40]. The experimental results span three different
conditions for implementing the OC pulses: (1) not taking the
system transfer function into account, i.e., assuming T = 1
for all frequencies, (2) modifying the input pulses using Tmeas,
and (3) the same as (2) but also implementing a spin-packet
selection (SEL) state preparation sequence [34] which effec-
tively increases T ∗2 by a factor of 2.

We implement the 24 elements of the Clifford group as
G = SPZ where S ∈ {I,X90,Y90}, P ∈ {I,Y180},
and Z ∈ {I,Z90,Z180,Z270}. S and P are implemented
using the numerically derived I, π/2 and π pulses and alter-
ing the phase as needed to achieve x- and y-axis rotations.
The operations in Z are implemented virtually by changing

the reference frame [42]. The initial state in all experiments is
represented by the deviation density matrix σz .

We can estimate the B-EPG and I-EPG averaged over the
set of operations G via RB and PB as follows [15, 23] (see the
quantum circuits in Fig. 1). (1) Prepare the state σz . (2) Apply
a sequence ofm uniformly-random operations from G, which
maps σz to ρj . (2.1) For RB, apply a recovery gateR ∈ G that
maps ρj back to ±σz . When the final state is −σz we change
the sign to be positive in post-processing, that is, implement
a virtual X gate. (3) For RB, estimate the expectation value
〈σz〉. For PB, estimate the purity

P = 〈σx〉2 + 〈σy〉2 + 〈σz〉2 (16)

of the final state ρj . Averaging over random sequences of
length m and fitting to

〈σz〉 = Az +B(1− 2ε)m

〈P 〉 = A′ +B′um−1 (17)

for RB and PB, respectively, under trace-preserving noise,
allows ε and the unitarity u (and hence εin via Eq. (10)) to
be estimated where the constants absorb the state preparation
and measurement (SPAM) errors and the non-unitality of the
noise. In particular, A′ =

∑
M A2

M (M ∈ {σx, σy, σz}) with

AM = TrME( 1
21l2) =

1

24

∑

G

TrME(GρG†), (18)

where the summation is over the single-qubit Clifford group
and the equality follows from the fact that the Clifford group
is a unitary 2-design and hence is also a unitary 1-design [14].
We can therefore estimate both constant off-sets by perform-
ing a single Clifford gate, measuring the expectation values of
〈σz〉, 〈σx〉, and 〈σy〉 and averaging over all Clifford gates.
The expectation values are measured by the corresponding
spin echo detection sequences in Figs. 1(c) and (d). We sam-
ple 150 random sequences for each sequence length m of RB
and PB independently.

Results and Discussion—The results of the RB and PB ex-
periments are presented in Fig. 2, with the corresponding esti-
mates for the B-EPG, I-EPG, coherent error rate and optimal
W-EPG listed in Table I.

Pulse distortion due to the system transfer function is sig-
nificant, as the transfer function bandwidth of ∼100 MHz is
comparable to the pulse excitation bandwidth. The improve-
ment between results from the unmodified OC pulses (T = 1)
and those modified by taking into account Tmeas in Table I
demonstrate substantial reduction in εcoh from ∼ 10−2 to
∼ 10−3. The εin is also reduced by approximately a factor
of two, from ∼ 1.0 × 10−2 to ∼ 0.5 × 10−2. This shows
that the pulse distortion is non-negligible, and causes both co-
herent and incoherent errors. The larger incoherent error for
the unmodified OC pulses is largely due to the OC pulses los-
ing their engineered robustness to Larmor frequency and B1

inhomogeneities when assuming T = 1.
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Figure 1. (Color online) Quantum circuits for (a) RB and (b) PB. The
initial state ρi is σz and the measurementsM are spin echo detection
sequences for measuring 〈σz〉 for RB and 〈σx,y,z〉 for PB. R in (a)
is the recovery gate that returns the state to ±σz . A total of 150
random sequences with Sj ∈ {I, X90, Y90} and Pj ∈ {I, X180}
(and virtual z-axis rotations) are applied for each sequence length m
for RB and PB. (c) and (d) are the spin echo detection sequences for
measuring 〈σz〉 and 〈σx,y〉, respectively. The π/2 and π pulses are
35 ns Gaussian pulses around the y-axis, and τ=700 ns represents a
delay.

T = 1 T = Tmeas T = Tmeas

no SEL no SEL SEL

ε 0.0234(11) 0.0073(2) 0.0063(2)

εin 0.0105(10) 0.0066(2) 0.0054(2)

εcoh 0.0119(21) 0.0007(4) 0.0009(4)

ε�,opt 0.040(26) 0.024(15) 0.020(13)

Table I. Estimates of the B-EPG ε, I-EPG εin, coherent error rate
εcoh and optimal W-EPG under perfect calibration ε�,opt per Clifford
gate. Gates are realized with OC pulses that assume a flat resonator
transfer function (T = 1) or are distorted based on the measured
transfer function (T = Tmeas), and with or without spin packet se-
lection (SEL) sequences respectively. Note that the values listed here
are obtained by fitting the RB and PB data to a single-exponential
decay, whereas the actual decays are non-exponential, especially no-
ticeable in the T = 1 case. Thus, the estimated gate errors given
here are effectively averaged over the non-Markovian noise (see main
text).

Although the decay rates of both the RB and PB experimen-
tal results are substantially reduced by using Tmeas to improve
the OC pulses, the decays seem to deviate from a single expo-
nential decay (i.e., see the oscillating deviations of the orange
data points from the orange solid lines in Fig. 2), implying the
existence of non-Markovian noise. In our system, the Larmor
frequency distribution for different spin-packets (T ∗2 effect)
results in a significant non-Markovian effect [34, 43]. The
benchmarking pulse sequences act like filters, in that the spec-
tral line-width of the part of the spin-packet that contributes
to the signal decreases with the number of gates. This means
the effective T ∗2 lifetime is not constant but increases with the

number of gates that are implemented. Therefore, the error
rates estimated using the single-exponential decay model are
the averaged values over this non-constant noise. Lindblad
numerical simulations (where the T ∗2 process is simulated by
averaging over multiple simulations with different Larmor fre-
quencies) give non-exponential decays for RB and PB [40],
agreeing with our experimental results. To reduce the non-
Markovianity due to T ∗2 , we implement SEL sequences before
each of the benchmarking sequences, which selects a narrower
line-width so the benchmarking experiments have a longer T ∗2
(∼ 160 ns) to begin with [40]. After incorporating the SEL
sequences, the experimentally observed decays fit to a single
exponential better (see the purple data points and purple dot-
ted lines in Fig. 2). The Lindblad simulation results with the
longer T ∗2 also exhibit single exponential decays up to ∼ 50
gates [40].

Using the SEL sequence improves εin from (6.6 ± 0.2) ×
10−3 to (5.4± 0.2)× 10−3, but has no statistically significant
effect on εcoh, which is (0.9± 0.3)× 10−3 and (0.7± 0.4)×
10−3 with and without SEL, respectively. This implies the
T ∗2 effect mainly contributes to the incoherent error. In the
Lindblad simulations of the benchmarking sequences using
the extended T ∗2 , εin caused by T1, T2, and T ∗2 is 3.5× 10−3,
and εcoh caused by the imperfection in the OC pulse design
is 0.5 × 10−3 [40]. We attribute the discrepancy between the
simulated and experimental values of εin and εcoh to possible
inaccuracy in the measured decoherence times, fluctuations
in the control mechanisms, and imperfect knowledge of the
transfer function.

Conclusions– We have demonstrated how RB and PB can
be used together to go beyond quantifying average gate fi-
delities by distinguishing coherent and incoherent contribu-
tions to the error. This allows improvements in calibration
and engineering pulses to suppress incoherent errors to be im-
plemented and diagnosed independently. Pulse distortion due
to the system transfer function T is the dominant error source
in our system and contributes greatly to the coherent part of
the gate error. Our measurement of T helps improve the OC
pulse fidelities significantly. The incoherent error is primarily
due to T1, T2 and T ∗2 processes. By effectively extending T ∗2
we reduce the non-Markovian effect and improve the control
fidelity further.

Results from gate set tomography included in the supple-
mental material indicate that our system has substantial gate-
dependent noise. The PB protocol has only been analyzed
under the assumption of gate-independent noise. Simulations
using the estimates from gate set tomography indicate that
PB can distinguish between gate-dependent coherent errors
that look incoherent when averaged over the gates and a gate-
independent incoherent process, at least for some physically-
realistic error models. However, we leave the general behavior
of PB under gate-dependent noise as an open problem.
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Figure 2. (Color online) Experimental (a) RB and (b) PB results. Each experimental data point of 〈σz〉 and 〈P 〉 is an average over 150
random sequences of m Clifford gates where P is defined in Eq. (16), and the error bars indicate the standard error of the mean. The lines are
least-squares fits to 〈σz〉 = B(1− 2ε)m +Az and 〈P 〉 = B′um−1 +A′ = B′(1− 2εin)

2(m−1) +A′, respectively. Az are 0.0156±0.0005,
0.0009±0.0010 and -0.0004±0.0013, and A′ are 0.0004±0.0001, 0.0005±0.0001 and 0.0001±0.0001, for the three cases ‘T = 1, no SEL’
(green dashed line), ‘T = Tmeas, no SEL’ (orange solid line), and ‘T = Tmeas, SEL’ (purple dotted line), respectively. Az and A′ are
estimated using Eq. (18). In (b),

√
〈P 〉 −A′ is plotted instead of 〈P 〉 to show that

√
〈P 〉 −A′ has a slower decay than 〈σz〉, indicating

εin < ε. The ε and εin values are given in Table I. Due to the limitation of the pulsed TWT amplifier, the largest m are 55 and 47 in the cases
without and with SEL sequences, respectively. All m are chosen randomly and independently for RB and PB sequences.
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