
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamical Piezoelectric and Magnetopiezoelectric Effects
in Polar Metals from Berry Phases and Orbital Moments

Dániel Varjas, Adolfo G. Grushin, Roni Ilan, and Joel E. Moore
Phys. Rev. Lett. 117, 257601 — Published 16 December 2016

DOI: 10.1103/PhysRevLett.117.257601

http://dx.doi.org/10.1103/PhysRevLett.117.257601


Dynamical piezoelectric and magnetopiezoelectric effects in polar metals from Berry
phases and orbital moments

Dániel Varjas,1 Adolfo G. Grushin,1 Roni Ilan,1 and Joel E. Moore1, 2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

The polarization of a material and its response to applied electric and magnetic fields are key
solid-state properties with a long history in insulators, although a satisfactory theory required new
concepts such as Berry-phase gauge fields. In metals, quantities such as static polarization and
magnetoelectric θ-term cease to be well-defined. In polar metals there can be analogous dynami-
cal current responses, which we study in a common theoretical framework. We find that current
responses to dynamical strain in polar metals depend on both the first and second Chern forms,
related to polarization and magnetoelectricity in insulators, as well as the orbital magnetization
on the Fermi surface. We provide realistic estimates that predict that the latter contribution will
dominate and investigate the feasibility of experimental detection of this effect.

Introduction The importance of Berry phases and
other geometrical properties of Bloch wavefunctions was
first clearly understood in topological phases such as the
integer quantum Hall effect [1, 2]. It rapidly became clear
that many physical observables in solids are described by
Berry phases even in ordinary insulators with no quan-
tization; the electrical polarization in a crystal can be
fully and concisely expressed via the Berry connection of
Bloch states [3, 4]. Metallic systems present additional
challenges: in the oldest example, the anomalous Hall
effect [5], there are both Berry curvature “intrinsic” con-
tributions and “extrinsic” contributions that depend on
the details of scattering processes. Discrete symmetries
underlie and restrict the emergence of these responses [6];
the anomalous Hall effect is enabled by the breaking of
time-reversal symmetry and is observed in magnetic met-
als.

The goal of this paper is to analyze a class of transport
effects enabled by the breaking of inversion symmetry in
metals. The study of inversion breaking materials such as
ferroelectric insulators with switchable polarization, has
revealed several fundamental pieces of solid-state physics
and lead to a variety of applications [7, 8]. These ad-
vances have translated into a recent increasing interest
in the more elusive polar metals [9–11]. While metals do
not have a measurable electrical polarization–any surface
charge density would be screened by the bulk conduc-
tion electrons–polar metals have a low enough symmetry
group to support a static polarization were they insula-
tors. More precisely, we explain how the Berry curvature
and related quantities such as the orbital magnetic mo-
ments [12] result in a piezoelectric and magnetopiezoelec-
tric (MPE) response to time-dependent strain in polar
metals with or without time-reversal symmetry. Some
of these observables can be viewed as generalizations to
metals of Berry curvature properties in insulators such as
electrical polarization and the orbital magnetoelectric ef-
fect, while others are Fermi-surface properties and hence
specific to metals. The effects we discuss have impor-
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FIG. 1. a) Schematic experimental setup. The sample
is placed in static magnetic field and homogenous time-
dependent strain is appiled. The top and bottom surfaces
are contacted, short-circuited through a low impedance am-
meter and the current parallel to the applied field is measured.
b) Illustration of the four dimensional momentum space. The
time-dependent parameter θ spans an orthogonal direction to
the three dimensional Brillouin zone, projected to two dimen-
sions here. The contributions to the MPE α1 and α2 come
from the interior of the Fermi sea (shaded red) and the Fermi
surface (red contour) respectively.

tant analogues in the corresponding insulating inversion-
broken state, in the same way as the integer quantum
Hall effect is connected to the intrinsic anomalous Hall
effect [13, 14]. An additional motivation for the present
work is the active theoretical discussion of when metals,
such as Weyl semimetals [15, 16], can support a current
that is induced by and is parallel to an applied magnetic
field (the chiral magnetic effect) [17–24]. The answer is
connected to the low-frequency limit of optical activity
and involves the magnetic moment of Bloch electrons at
the Fermi level [25, 26], which raises the question of what
other properties of metals might involve such magnetic
moments.

The main results of the present work are summarized
in equations (12)-(15) and table I compiles the symme-
try requirements for the effects to emerge. The first is
referred to as piezoelectricity [27–29]; in a polar mate-
rial, even in a metal, any time-dependent change of the
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I T m Eq.
Piezoelectricity No Any Any (13)
MPE Fermi sea No No Any (14)
MPE Fermi surface No No Nonzero (15)

TABLE I. The dynamical current effects considered in this
work and their requirements in terms of inversion (I)
and time-reversal (T ) symmetries and the orbital moment
m. “MPE” stands for magnetopiezoelectricity, i.e., strain-
induced currents linear in applied magnetic field.

material, such as a time-dependent strain, will induce a
current resulting from the change of polarization. In a
metal, only changes in polarization are well-defined as
these involve measurable bulk currents through the unit
cell. As a difference with the insulating case where the
energy gap protects against process that do not excite
electrons far from the ground state, we will require a slow
evolution of strain relative to electronic time scales [30].
This assumption guarantees that the distribution func-
tion remains close to equilibrium. Additional effects from
strongly non-equilibrium distributions and the scattering
processes that restore equilibrium are left for future work.

A second effect, which we call magnetopiezoelectric-
ity, emerges when the material is magneticaly ordered
and time-reversal symmetry is broken along with inver-
sion symmetry. This second order current response is
bilinear in strain rate and static external magnetic field
(Fig. 1 a). One contribution can be viewed as the gener-
alization to metals of the orbital magnetoelectric effect in
insulators [31–34]. It involves the second Chern form of
the Berry gauge fields [35, 36][37], a slightly more compli-
cated geometrical object than the first Chern form that
controls the polarization and Hall effect, and can be in-
terpreted as a metallic version of the dynamical axion
effect in antiferromagnets [38, 39].

We also find a second, purely Fermi-surface contribu-
tion to the MPE that is proportional to the orbital mag-
netic moment. Our estimates for realistic systems suggest
that this part of the MPE unique to metals dominates
the response. It is therefore the main prediction of this
letter for a new experimental effect.

Methodology To address the topological responses of
metallic magneto-electrics we employ the semiclassical
formalism [12, 13, 35, 40–42]. Our starting point is a
three-dimensional Hamiltonian of a metal H(k, θ) that is
parametrized by a time-dependent parameter θ(t). The
microscopic origin of θ(t) can be diverse, it can for ex-
ample parametrize ferromagnetic [43] or antiferromag-
netic ordering [44]. Such a fluctuating magnetic order in
insulating systems has been previously studied [45] and
termed “dynamical axion field”.

In this work we focus on the case where θ emerges
from the coupling of homogeneous time-dependent strain
to orbital degrees of freedom, which effectively renormal-
izes the hopping structure of H(k) in a time-dependent

fashion leading to H(k, θ). The parameter θ can refer to
any strain component, or an arbitrary parametrization
of some combination of strain components. Before pro-
ceeding, it is worth highlighting several relevant aspects
of our calculation. First, strain is non-electromagnetic
and acts as an independent external field. Second, al-
though we allow for the time-reversal-breaking magnetic
order required for the MPE to depend on θ, we assume it
does not respond to external magnetic fields at the linear
order of interest here. Thus we only focus on the orbital
contribution. Finally, we assume the clamped ion limit;
strain changes the hopping amplitudes for the electrons
but the atomic coordinates remain fixed.

A compact way of dealing with H(k, θ) is to regard
θ as an extra momentum coordinate. The semiclassical
equations governing the dynamics in this case are given
by

ṙi =
1

~
∂Ẽk,θ
∂ki

−
(
Ω̃× k̇

)i
− Ω̃iθ θ̇, (1)

~k̇i = −eEi − e (B× ṙ)i , (2)

in terms of the external magnetic (B) and electric (E)
fields, the i = x, y, z component of the three-dimensional
position (r) and momentum (k). The Berry curvature
components Ω̃ and Ω̃iθ, to be defined precisely below,
determine the Hall conductivity [3] and the piezoelectric
effect [29] respectively. For what follows, we find it con-
venient to promote the semiclassical picture to a four-
dimensional space defined by an extended momentum
and position vector (see Fig. 1 b), kµ = (k, θ) and rµ =
(r, rθ) respectively, with µ = x, y, z, θ [46]. The semi-
classical equations for such a phase space read [12, 47]

ṙµ =
1

~
∂Ẽk,θ
∂kµ

− Ω̃µν k̇ν , (3)

~k̇µ = −eEµ − eBµν ṙν . (4)

Here Eµ and the antisymmetric tensor Bµν are the
generalization of the electric (Ei) and magnetic (Bi =
1
2εijkBjk) fields where by construction Bµθ = 0 that im-

plies, from (4), that ~θ̇ = −eEθ. We note that Eq. (3) in-
cludes two corrections due to the external fields [12, 48].
One modifies the band structure εk,θ → Ẽk,θ = εk,θ −
mk,θ ·B where mk,θ = e

2~ Im〈∂kuk,θ|× (H−εk,θ)|∂kuk,θ〉
is the magnetic orbital moment defined through the
Bloch wave-functions |uk,θ〉. Second, the unperturbed
Berry curvature Ωµγ = ∂kµakγ − ∂kγakµ where akµ =

i〈uk,θ|∂kµ |uk,θ〉 is corrected as Ωµγ → Ω̃µγ = Ωµγ + Ωµγ1
(Ω̃i = 1

2εijkΩ̃jk). The additional Ωµγ1 = ∂kµa
′
kγ
− ∂kγa′kµ

is defined by a′kµ = i〈uk,θ|∂kµ |u′k,θ〉 + c.c. that incorpo-
rates the first-order correction to the Bloch wave-function
|u′k,θ〉. The quantity a′kµ is gauge-invariant, and physi-
cally corresponds to a shift of the wave-packet centre in-
duced by interband mixing from the external fields [48].
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Combining (3) and (4) and keeping terms to second
order in the external fields results in [47]

ṙµ =
1

~
∂Ẽk,θ
∂kµ

+
e

~
Ω̃µν

(
Eν +

1

~
Bνλ

∂Ẽk,θ
∂kλ

)
+

+
e2

~2
Ω̃µνBνλΩ̃λγ

(
Eγ +

1

~
Bγδ

∂Ẽk,θ
∂kδ

)
+ · · · , (5)

which enters the current density

jµ = e

∫
T3

d3k[ṙµDk,θ]f(Ẽk,θ, µ). (6)

Here f(Ẽk,θ, µ) is the Fermi-Dirac distribution for the

perturbed band structure Ẽk,θ at chemical potential µ
and Dk,θ is the modified density of states defined as

Dk,θ =
[
1 + 1

2
e
~BµνΩ̃µν +O(B2)

]
. Using (5) and (6) the

current density reads

jµ = e

∫
T3

d3k

(2π)3

[
1

~
∂Ẽk,θ
∂kµ

+
e

~
Ω̃µνEν+

+
e2

~2

(
ΩµνBνγΩγδEδ +

1

2
ΩδγBδγΩµνEν

)
+

+
e

~2

(
Ω̃µνBνγ

∂Ẽk,θ
∂kγ

+
1

2
Ω̃γνBγν

∂Ẽk,θ
∂kµ

)]
f(Ẽk,θ, µ)+

+ · · · . (7)

We are interested in the spatial components of current
density ji generated when E = 0. Keeping terms poten-
tially linear in B results in [49]

ji = e

∫
T3

d3k

(2π)3

[(
1

~
∂Ẽ
∂ki

+ θ̇Ω̃iθ

)
− 1

8

e

~
(
εµνγδΩ

µνΩγδ
)
θ̇Bi

+
1

2

e

~2

(
εlmnΩ̃lm

∂Ẽ
∂kn

)
Bi

]
f(Ẽk,θ, µ) + · · · , (8)

which is of the form ji = jia + jib + jic. The last term,
jic can be proven to be zero [50] which is consistent with
the absence of the chiral magnetic effect in the static
limit [25, 26]. In the second term, jib, keeping only linear
order corrections in Bi allows us to evaluate the distri-
bution function at the unperturbed energy εk,θ leading
to

jib =− 1

8

e2

~

∫
T3

d3k

(2π)3

[(
εµνγδΩ

µνΩγδ
)
θ̇
]
f(εk,θ, µ)Bi ,

(9)

which we note is linear in magnetic field as desired
and explicitly gauge invariant. To simplify jia, we can
expand the Fermi-Dirac distribution around its unper-
turbed form f(εk,θ, µ)

f(Ẽk,θ, µ) ∼ f(εk,θ, µ) +
∂f(E)

∂E

∣∣∣
εk,θ
Ẽ ′ + · · · , (10)

where Ẽ ′ = −mk,θ ·B. We obtain

jia =e

∫
T3

d3k

(2π)3

[
θ̇Ωiθf(εk,θ, µ) + θ̇Ωiθ1 f(εk,θ, µ)

−θ̇Ωiθ ∂f(E)

∂E

∣∣∣
εk,θ

mk,θ ·B
]
, (11)

using that the integral of the Fermi velocity over the
Fermi sea vanishes. The correction Ωiθ1 to the Berry
curvature results from interband mixing and vanishes
as 1/∆3 where ∆ is the separation between different
bands [48]. Taking ∆ to be large, the low temperature
limit and recasting the last term in (11) as a Fermi sur-
face contribution, the final response, which is the central
result of this work, is given by

ji = βiθ̇ + (α1δ
ij + αij2 )θ̇Bj +O(1/∆3), (12)

βi = e

∫
occ.

d3k

(2π)3
Ωiθ, (13)

α1 = −1

8

e2

~

∫
occ.

d3k

(2π)3
εµνγδΩ

µνΩγδ, (14)

αij2 = − e
~

∫
FS

d2k

(2π)3
1

|vk|
Ωiθk m

j
k,θ, (15)

where ~ |vk| = |∂εk,θ/∂k|.
The first term βi is independent of the magnetic field

and captures the piezoelectric effect [27] when θ corre-
sponds to strain. For metals, the bulk current arises from
the change in polarization involving occupied states.

The second term, α1, is the analogue of the isotropic
magnetoelectric effect in insulators. Recall that in an
insulating system a polarization in response to a static
magnetic field is characterized by the momentum integral
of a Chern-Simons three-form determined by the band
structure [31–34]. For the case of metals we find that
the change in polarization depends on the variation with
respect to θ and is determined by the integral of the
second Chern-form, εµνγδTrΩµνΩγδ over occupied states.
It is exactly the derivative of the Chern-Simons three-
form with respect to θ.

Two important remarks are in order. First, the semi-
classical approach only incorporates single band effects
and thus Ωµν is an Abelian U(1) curvature and we
need not trace over its components. This yields an
isotropic magnetoelectric effect in our semiclassical treat-
ment, which neglects terms resulting from cross-gap con-
tributions, which vanish as 1/∆ [33]. Second, the current
generated by finite deformations is well defined since it
is the integral of the second Chern-form. The Chern-
Simons three-form is only gauge-invariant if integrated
over a closed manyfold, so it does not correspond to a
measurable quantity in metals; the static polarization is
ill defined in metals.

Finally, the third term, αij2 , is a novel Fermi surface
contribution that is unique to metals. It is the correction
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to the piezoelectric response at linear order in the mag-
netic field due to the orbital moment of the Bloch states.
In what follows, we estimate the magnitude of all three
terms contributing to the current to find that the Fermi
surface contribution dominates the response.

Experimental feasibility An estimate of the observ-
ability of the current in Eq. (12) relies on the magnitude
of the Berry curvature Ωµν , which is common to all its
terms. We have distinguished two contributions to Ωµν

of distinct physical origin: the purely spatial part Ωij

and the mixed Ωiθ terms. The former defines the Hall
conductivity σij = Cije

2/h in the (i, j) plane through
the Chern number Cij = 1

2π

∫
d2kΩij . Since Cij is of the

order of unity [51] or higher [52, 53], we expect Ωij & a2

2π
where we estimate the cross sectional area of the unit cell
in the (i, j) plane using the lattice spacing a. To estimate
Ωiθ we use previously known facts about the piezoelectric
effect. Identifying θ with a specific strain component εjk

(θ = εjk), the piezoelectric constant reads [29]

βijk =
∂P i

∂εjk
= −e

∫
occ.

d3k

(2π)3
Ωiθ. (16)

This formula only contains the electronic (clamped
ion) contribution to the polarization response, typically
smaller than the dominant contribution from the rear-
rangement of the ions. The electronic contribution can
nonetheless be accessed independently in ab initio cal-
culations that estimate βi ∼ 1 C/m2 [54] (suppressing
the strain component indices for clarity). It follows that

Ωiθ ∼ βi a
3

e using the inverse cube of the lattice spacing
as an approximate volume of the Fermi sea.

From the above estimate of the piezoelectric effect we
can now approximate the magnitude of the remaining
terms in Eq. (12), α1 and αij2 given by Eqs. (14) and (15)
respectively, that are novel to this work. The magnitude
of the Fermi sea contribution α1 amounts to

α1 ∼
e

~
a2Cijβ

k, (17)

for a particular set of i 6= j 6= k and neglecting the order
one factor arising from the difference between a Fermi
sea integral and a Brillouin zone integral. Inserting βk ∼
1 C/m2, a ∼ 10−10m, Cij = 1 we get α1 ∼ 10−5 A s

Tm2 .
The estimate of the magnitude of the Fermi surface

term α2, unique to metals, requires the magnitude of the
orbital magnetic moment |m|. A conservative estimate
results in |m| ∼ µB ∼ 10−23J/T where µB is the Bohr
magneton but it can be as large as |m| ∼ 30µB [12]. The
area of the Fermi surface can be estimated as 1/a2, the
cross section of the BZ which is the inverse of the cross
section of the real space unit cell. Taking vF ∼ 106m/s,
which is typical for metals but can be significantly smaller
for lightly doped insulators near the band bottom, and
using our above estimate for Ωiθ we obtain

α2 ∼
βimja

~vF
∼ 10−4

A s

T m2 . (18)

Therefore we conclude that α2 & α1, and the Fermi sur-
face contribution specific to metallic systems is dominant.

In addition, it is relevant to emphasize the follow-
ing important points regarding experimental detection.
Firstly strain rates at the order of 10−2s−1 are achievable
in the elastic regime using ultrasonic techniques [55, 56].
For a sample at the cm scale, with cross sectional area
As ∼ 10−4m2 and a magnetic field of 1T [57], the cur-
rent signal is of the order of Ii = Asji ∼ 100 pA. Con-
ventional ammeters have sensitivity extending to the pA
range that is further improved in SQUID devices.

Second, the magnetopiezoelectric effect is expected to
coexist with the piezoelectric contribution, so accurate
measurements over a range of magnetic fields are neces-
sary for its detection. In our estimates α2 is proportional
to and much smaller than β. However, β gets contribu-
tions from the entire Fermi sea, while α2 only depends
on Fermi surface properties. This allows suppression of
β without changing α2 in appropriately engineered band
structures.

Third, the movement of the ions and the polarization
of electrons in the valence bands induces a bound surface
charge density. Part of the bulk current can be trapped
screening it, possibly preventing its detection in our pro-
posed setup (Fig. 1), but there is no reason to expect full
cancellation. We note as well that pumping DC current
is also possible by out-of-phase modulation of different
strain components. Such a deformation path encircles a
finite area in parameter space; the integral of the cur-
rent for a pumping cycle is in general a non-vanishing,
non-quantized value.

Finally, from the materials perspective we find that
MnSi satisfies most requirements for these effects to man-
ifest. It is a magnetically ordered, inversion breaking
metal with complex Berry curvature patterns in the con-
duction bands that is very susceptible to strain [58–61].
The magnetic order, however, is incommensurate and
very sensitive to external magnetic field. An ideal candi-
date material would have simple easy axis ferromagnetic
or Néel order that has vanishing susceptibility for mag-
netic fields in the ordering direction in the low temper-
ature limit. The recently studied polar metals [10, 11],
while non-magnetic, would provide a platform to real-
ize the field-independent piezoelectric response β. Cold-
atomic systems also offer an alternative; the current is
related to an easily accesible observable, the center-of-
mass velocity vc.m. through vc.m. = j/n where n is the
density of the atomic cloud. Recently, vc.m. has been
exploited as a probe of topological properties [62] and it
is therefore plausible that the effects we discuss here can
be observed in these systems as well.
Conclusion We have calculated a novel magne-

topiezoelectric response in inversion and time-reversal
breaking metals subjected to static magnetic field and
dynamic strain. Similar to the anomalous Hall effect in
metals which can be viewed as a generalization of the
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quantized anomalous Hall effect in insulators, our results
for magnetopiezoelectricity generalize the magnetoelec-
tric response of insulators to metals. As a key difference,
we find an additional Fermi surface contribution that re-
lies on a finite orbital moment of the electrons, that is
unique to metals and likely dominates the effect in real
systems.
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