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In unconventional superconductors, understanding the form of the pairing interaction is the pri-
mary goal. In this regard, Raman spectroscopy is a very useful tool, as it identifies the ground state
and also the subleading pairing channels by probing collective modes. Here we propose a general
theory for multiband Raman response and identify new features in the spectrum that can provide a
robust test for a pairing theory. We identify multiple Bardasis-Schrieffer type collective modes and
connect the weights of these modes to the sub-leading gap structures within a microscopic pairing
theory. The conclusions are completely general, and we apply our approach to interpret the B1g

Raman scattering in hole-doped BaFe2As2.

Introduction: Fe-based superconductors (FeSC) ap-
pear to display s-wave pairing, with an order parame-
ter that may change sign between Fermi surface (FS)
pockets[1–4]. Theoretical calculations based on spin
fluctuations have found that the d-wave channel can
be strongly competitive, and even argued that d-wave
could become the ground state for sufficiently strong
electron[5, 6] or hole doping[7]. The consequences of a
competing pairing channel were explored by Bardasis and
Schrieffer[8], who predicted the existence of a new col-
lective mode corresponding to the phase fluctuations of
the subdominant (d−wave) order parameter above the
ground state (s−wave). An analogous simple calculation
was performed by Devereaux and Scalapino[9] for a typ-
ical FeSC electronic structure with s± symmetry of the
ground state with anisotropic gaps. They showed that
the mode frequency should depend on 1/ud−1/ũs, where
ud is the d-wave coupling constant and ũs is a renormal-
ized s-wave coupling that depends on the angular form
of the gap in the condensed state.

Such a mode (called a Bardasis-Schrieffer (BS) mode
or particle-particle exciton), couples to the Raman probe,
but was never observed in conventional superconductors.
Recently, however, measurements on Ba1−xKxFe2As2[10,
11], NaFe1−xCoxAs[12], Ba(FexCo1−x)2As2[13] found
peaks in the B1g polarization spectrum which were con-
sistent with a collective mode. Although, in the latter
two cases, these peaks were identified with an excitonic
mode originating due to the proximity to the nematic
phase[14], the observation of multiple peaks in the former
system for dopings farther from the region dominated by
nematic fluctuations is rather puzzling. We thus propose
that the peaks observed in the K-doped system are more
likely BS modes.

In this Letter, we provide a scheme to calculate the
Raman-response within a microscopic pairing theory, us-
ing the same microscopic interactions that lead to pair-

ing, and point out several details of the Raman-spectrum
that were either not expected or not explained before. In
particular, we show that in crystalline systems multiple
BS modes exist and appear with a characteristic weight in
the spectrum. We believe that such a theory is necessary
to accurately calculate the observed Raman intensity.

In fact, every subleading pairing channel leads to a BS
mode (there may be multiple resonances). In crystalline
systems with unconventional electronic structure, there
can be an interplay of several orthogonal form-factors in
the subleading channel as well. This aspect, which can
strongly influence the shape of the Raman spectrum, ap-
pears to have been neglected until now. Theoretically,
the solution to the linearized gap equation for a variety
of materials[2] indeed shows the relevance of more than
one subleading eigenfunction within the same irreducible
representation of the normal state symmetry group. In
particular, a spin fluctuation pairing calculation for the
Ba1−xKxFe2As2 system indicates that the system con-
denses in a (A1g) s± state, and that at least two sub-
leading B1g harmonics have non-negligible eigenvalues.
We will show that this situation allows for the existence
of well resolved BS peaks in the spectrum whose spec-
tral weight distribution, as obtained from theory, seems
consistent with the experiment.

Here we present a general scheme to compute the Ra-
man scattering intensity for a multiband model, including
vertex corrections. We then apply the general formula-
tion to two specific cases and illustrate all of the points
discussed above. The advantage of this formalism lies in
the fact that it is valid for any ground-state with any
number of bands and it accounts for all collective modes
through the vertex corrections, which removes the sin-
gularity of the Raman response at twice the gap edge.

Multiband Raman response in the B1g channel: The
intensity of the Raman response in a multiband sys-
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FIG. 1: The summation scheme for non-resonant Raman-
scattering for the B1g sector. The long-range Coulomb in-
teraction does not affect this sector. Here U is shorthand for
a generic residual interaction vertex in the pairing channel.

FIG. 2: Two toy models considered for illustration of the
main results of this work: (a) One pocket around Γ-point
with s− and two d−interactions corresponding to 2θ and 6θ
harmonics. (b) 3 pockets where only the interactions in the
dark font are retained.

tem, in the non-resonant response limit, in the B1g

channel can be expressed as[15] χR(Q) ≡ χR(Ω, ~q) ∝
∑

a,b

∫

dte−iΩt〈ρRa (t, ~q)ρRb (0, ~q)〉 ≡ ΠRR(Q), where ρRa , in
the non-resonant limit, is well approximated by the “Ra-
man density” in the B1g channel:

∑

~k γ
a
~k
ca †
~k
ca~k, where γ

a
~k

for band a in the B1g channel is ∂2εa~k/∂k
2
x − ∂2εa~k/∂k

2
y.

Here Ω and ~q correspond to the shift in frequency and
wavevector of the incident light. In metals, q ≪ kF , the
Fermi wave vector, and will be set to zero in this work.
We evaluate the above expression in the SC state using
the summation scheme outlined in Fig. 1. To do so,
we work with the Hamiltonian H = H0 + Hint, where
H0 =

∑

~k,σ,a ε
a
~k
c†~k,σ,a

c~k,σ,a − ∑

~k ∆
∗
~k,a
c~k,↑,ac−~k,↓,a + c.c

and

Hint =
∑

a 6=b

U
(3)
ab (~q)c†~k,α,a

c†~k′+~q,β,a
c~k′,β,bc~k+~q,α,b

+
∑

a

U (4)
aa (~q)c†~k,α,a

c†~k′+~q,β,a
c~k′,β,ac~k+~q,α,a.

This is the momentum dependent form of the in-
teractions as modeled, e.g. in Ref. [16, 17] (the
other interactions neglected here do not affect the
main message of this work). We proceed by rotat-
ing the basis to the Nambu space with the spinor
ψ†
~k

= (c†~k,↑,1
, c

−~k,↓,1, c
†
~k,↑,2

, c
−~k,↓,2, ...), where 1, 2... are

the various bands. The interaction is recast as Hint =
∑

Uαβγδ(~q)ψ†
~k,α
ψ†
~k′+~q,β

ψ~k′,γψ~k+~q,δ. The explicit form of

the interaction vertex is listed in the supplementary ma-
terial(SM). Then, we need to evaluate

ΠRR(Q) =
∑

a,b

∫

K

Tr
[

R̂a3ĜK Γ̂Rb

3 ĜK+Q

]

, (1)

Γ̂Ra

3 = R̂a3−
∑

c,m,n

Unm
ac fn

~k

∫

K′

fm∗
~k′

Mac·ĜK′Γ̂Rc

3 ĜK′+QM†
ac,

where, R̂a3 =
∑

t f
t
~k
cta[σ3 ⊗ sa];

∫

K ≡ T
∑

n

∫

d2k
(2π)2 ; sa is

the band selector of the form diag (0, ..., 1, 0, ...) (1 at the
ath location); σ1,2,3 are Pauli matrices in Nambu space;

Ĝ is the bare Greens’ function in Nambu space with ele-
ments Ĝa = [iωnσ0 − ǫa~kσ3 −∆~k,aσ1]

−1 for band a; γa~k is

expanded as
∑

t f
t
~k
cta, where {f~k} is a set of orthogonal

functions within the B1g sector; Unm
ab is the projection

matrix element of Uαβγδ for harmonics n,m for the in-
teraction between bands a and b and M is a matrix that
accounts for transformation to Nambu space (see SM).
All matrices are 2N × 2N , where N is the number of
bands and 2 is the Nambu space dimension. To proceed,
it is necessary to introduce the other Nambu components:
ΓRb

i with i = 1, 2 in addition to i = 3, the solution

for which is constructed as ΓRb

i =
∑

t,a f
t
~k
[σj ⊗ sa]Kt,ab

ji ,

where the matrix Kt,ab
ji is found after substituting for ΓRb

i

in Eq. 1. The response ΠRR is then given by

ΠRR =
∑

a,d,t,t′

ct,aΠtt′;a
3i Kt′,ad

i3 , where (2)

K =

[

1 +
1

4
[Upp] · [Π̃−Π] +

1

4
[Uph] · [Π̃ + Π]

]−1

[c],

Π̃mt;b
ij =

∫

K′

fm∗
~k′

f t
~k′
Tr

[

M†
ab · [σi]aMabĜK′ [σj ]

bĜK′+Q

]

.

(3)
Here [Upp,ph] is the coupling matrix in
nambu⊗band⊗harmonic space and K and [c] are
matrices in nambu⊗band space, but a vector in har-
monic space (see SM for examples); The subscript pp
and ph for [U ] stand for its pairing and density channel
projections. Further, [σi]

a ≡ σi ⊗ sa and Π is the same
as Π̃ but without the M−M matrices.
The collective modes are contained in the poles of K.

While in general K is 4 × 4 in Nambu space, the singlet
ground state which preserves time reversal symmetry de-
couples this into two 2 × 2 blocks: spin-amplitude and
phase-density sectors. Since the BS modes are in the
phase sector, we only deal with this 2 × 2 subspace in
this work. The advantage of this formalism is that the
Raman response is computed for a microscopic model
where it is dressed by the same interactions that led to
pairing. The microscopic problem provides the relevant
number of harmonics H that effect the pairing problem
and this approach to calculate Raman response then calls
for computing the numbers Πnm (n,m ∈ {1, ...H}) and
carrying out a matrix inversion.
Connection to collective modes: It is well known that

the collective modes in the sub-leading channel couple to
the Raman response [9, 18]. However, several questions
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remain: Are the poles in the Raman response always the
same as the frequencies of collective modes? If there are
multiple collective modes, how and with what spectral
weight do they couple to the Raman probe?
Our formalism naturally provides answers to such

questions. The poles of Raman response (Eq. 2) are
contained in poles of K = [1+ [Upp][Π̃−Π]/4+ [Uph][Π̃+
Π]/4]]−1. The collective mode in a general multiband su-
perconductor, can be found, e.g. using the formalism in
Ref. [19] and they are the poles of [1− [U ][Π]/2]

−1
. Thus

it is clear that, in general, the poles are not the same.
However, if the interaction in the density channel is weak
([Uph] → 0), then one can show that in the pairing in-

teraction sector, Π̃ → −Π and we restore the collective
mode result. This was also pointed out in Ref. [20] us-
ing a different scheme. In most works in the literature,
the density channel has been neglected; for demonstra-
tion purposes, we shall do the same here. This precludes
the appearance of a particle-hole exciton[20] in the Ra-
man intensity analogous to the so-called “neutron reso-

nance” and does not affect any of our claims for the case
of the B1g Raman polarization. The answer regarding
the weights of the various BS modes will be apparent in
the following examples.

Simple toy models showing multiple BS modes: First
we consider a Γ centered pocket, together with an s-
wave BCS like ground state for the system with the
order parameter ∆ [23]. We then choose a compet-
ing SC B1g channel with two harmonics via the inter-
action: Uθ,θ′ = 2U22 cos 2θ cos 2θ

′ + 2U66 cos 6θ cos 6θ
′ +

2U26(cos 2θ cos 6θ
′+cos 6θ cos 2θ′). The gap structure has

the form ∆θ =
√
2∆2 cos 2θ +

√
2∆6 cos 6θ. The num-

bers we need to compute the B1g Raman response are:

Π22,26,66
22,32 , which in this model are: Π22,66

22,32 = Π00
22,32 ≡

Π22,32 and Π26
ij = 0. We also assume the harmonic de-

composition of γ~k in terms of coefficients c2,6. The Ra-
man response, as computed in this formalism, is then
given by

ΠRR = (c2)
2

{

Π33 −
(Π23)

2
(

U22/2 + [U2
26 − U22U66]Π22/4

)

D

}

+(c6)
2

{

Π33 −
(Π23)

2
(

U66/2 + [U2
26 − U22U66]Π22/4

)

D

}

,

(4)

where D ≡ 1 − (U22 + U66)Π22/2 − (Π22)
2(U2

26 −
U22U66)/4, zeroes of which correspond to peaks in
the Raman spectrum. A simple exercise[21] shows us
that this determinant is exactly the equation the de-
termines the frequency of the BS modes. Important
information about the pairing interaction can be more
readily extracted if we rotate the interaction in the or-
thogonal basis functions provided by the eigen vectors
of the pairing problem. When this rotation is done,
{U22, U26, U66} → {Ũ1, 0, Ũ2}, {c2, c6} → {c̃1, c̃2}; where
c̃1,2 =

∫

θ

(

∂2ε
∂k2

x
− ∂2ε

∂k2
y

)

|FS ∆
(1,2)
θ are the overlap of the

Raman vertex γ~k with the eigenvectors ∆
(1,2)
θ (FS stands

for projection on the Fermi surface). The response then
takes the form ΠRR =

(c̃1)
2

{

Π33 −
(Π23)

2

2
Ũ1

−Π22

}

+ (c̃2)
2

{

Π33 −
(Π23)

2

2
Ũ2

−Π22

}

.

(5)
Here Π22 = 2

Us
−2νF (Ω), where ν is the density of states

at the FS and F (Ω) = (Ω/2∆) sin−1(Ω/2∆)√
1−(Ω/2∆)2

. The BS modes

are solutions to νF (Ω) = − 1
Ũ1,2

+ 1
Us

. These BS modes

are weighted by c̃1,2. Note that the weight of the BS
mode goes to zero as it softens[22]. Fig. 3 displays the
Raman response for various cases: when d−wave solution
is not competing (Ũ1,2 > 0, i.e. repulsive channel), there

are no collective modes. As more channels become com-
petitive, collective modes begin to show up (Fig 3b-c).
The weight of the collective modes are controlled by the
electronic structure via the c̃1 and c̃2 coefficients. Since
a microscopic theory for pairing is capable of providing
the numbers Ũ1,2, c̃1,2, augmenting such a theory with a
calculation of Raman spectrum provides a much stronger
testing ground for its validity. It is also clear from Fig. 3
that the harmonics of the interaction that ‘host’ the BS
modes contribute very little to the 2∆ peak, an effect due
to vertex correction and is analogous to what happens in
A1g sector [24]. There are contributions, however, to the
2∆ peak from other solutions that have an eigenvalue
close to zero and the effect of vertex corrections is weak.
This is shown explicitly in the next example.

We now consider an example where the electronic
structure is more specific to FeSC. Such a model would
consist of 1 hole and 2 electron pockets as shown in Fig.
2. To minimize the parameters and keep the calcula-
tions analytically tractable, we choose minimal interac-
tions necessary to satisfy the symmetry requirement for
the ground state of FeSC: we first restrict the interband
interaction to be Us in the s-channel, and further as-
sume the following relations for the density of states at
the Fermi level: νh = 2νe ≡ ν. This results in an s±
state with ∆h = −∆e = ∆. We now choose the in-
teraction in the B1g channel with only Uhh

d and Ue1e2
d
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FIG. 3: Raman response for toy model with one pocket. The dashed red line in each case is the response in the absence of
interactions. (a) Case where d−wave is not competitive: νŨ1 = 0.4 and νŨ2 = 0.3. (b) Case where only one d−wave solution is

competitive: νŨ1 = −0.4 and νŨ2 = 0.3. (c) Case where both d−wave solutions are competitive: νŨ1 = −0.4 and νŨ2 = −0.3.
The light and dark blue correspond to a band structure such that c̃1 and c̃2 are switched: this shows the connection of spectral
weight of a Raman peak with the subleading eigenvectors. Here νUs = −0.5, c̃1 = 0.6 and c̃2 = 0.3. A fermion lifetime of
0.05∆ was included to get the broadening.
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FIG. 4: (a)Raman response in the toy model with 3 pockets, with parameters ch = 0.2, ce = 0.5, co = 0.3, νUs = 0.5,
(broadening of 0.05∆). The 2∆ feature in the spectrum remains because of non-zero co. (b) Correlating the evolution of the

BS peaks by tuning the doping and the leading and subleading d−wave eigen-values (Uhh,e1e2
d are modeled with doping and

chosen to mimic panel (c), which is 5-band calculation). (c) Calculated eigenvalues λd1 and λd2 in overdoped Ba1−xKxFe2As2
from RPA (see SM) with doping. (d) Corresponding eigenvectors plotted over the Fermi surface (the Γ−point has an inner and
and outer pocket) for the ground-state s± (λs1), and subsequent dx2−y2 -wave solutions(λd1,2,3 ) for x = 0.55. The symbol size
is ∝ the gap size with red = + and yellow = −.

components retained. This guarantees two competing
subleading solutions: [∆h = cos 2θ; ∆e1,e2 = 0] and
[∆h = 0; ∆e1,e2 = (1,−1)]. We now define the over-

laps of γh,e(~k) with harmonics in the interaction above
to be ch and ce. The overlaps with remaining harmon-
ics not dominant in the interaction are lumped under
co. Following the same procedure as above and rotating
the B1g interaction in the pairing eigenvector basis, we
find the Raman response to be analogous to Eq. 5 with
c̃1,2 → ch,e and an additional term, (co)2{Πh

33 + Πe
33},

from the residual harmonic content of γh,e~k
. This lat-

ter term is responsible for the 2∆ peak in the presence
of BS modes, and represents the combined weight of all
the Bardasis-Schrieffer modes of negligible strength, piled
up around the two-particle continuum edge. In previ-
ous calculations, these contributions were neglected, so,
if the collective modes were properly accounted for, the
2∆ peak was absent, in contrast to experiments[10–12].
This is the first explanation, to our knowledge, of this es-
sential experimental feature. While the straightforward
algebra is shown in SM, the Raman response is plotted

and explained in Fig.4.

Relevance to (Ba,K)Fe2As2: We now wish to ap-
ply this new understanding of the Raman spectrum to
the overdoped region of BaKFe2As2. It is well known
[7, 25, 26] in this system that higher hole doping makes
the d-wave state competitive with the s± ground state.
We have carried out RPA calculations for the 5-orbital
model for BaFe2As2 introduced in Graser et al.[27] using
the usual spin- and charge-exchange interaction[28, 29].
As shown in Fig. 4c and d, these calculations find a lead-
ing s± state and at least two subleading and competing
B1g states which are well resolved in energy[30]. Conse-
quently, the insight from this work suggests appearance
of two BS modes as a function of doping. Such a feature
is reportedly seen in experiments[31] where the trend in
the evolution of the peak positions correlates with the
trend in eigenvalues just as shown for the toy model in
Fig.4b.

Conclusions: In summary, we have provided a proof
of principle method for using the details of the Raman
spectrum, together with theory, to learn the details of the
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pairing interaction in an unconventional superconductor.
The calculation of the response with the full momentum
structure of the interaction is outside the scope of this
letter and will be considered in a more detailed future
study. This formalism is readily generalizable to any
ground-state symmetry and any number of bands. We
have identified several features that help to better un-
derstand the Raman spectrum: a) there can be multiple
Bardasis-Schrieffer modes in an s-wave superconductor;
b) the overlap of the gap structure with the bare Ra-
man vertex γ~k determines the weights of the modes c)
incorporating the vertex corrections, we find that the 2∆
feature is suppressed and exists only due to the residual
harmonics of the Raman vertex γ~k that are not involved
in pairing.
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