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We analyze the recently measured anomalous transport properties of an ultracold gas through
a ballistic constriction [S. Krinner et al., PNAS 113, 8144 (2016)]. The quantized conductance
observed at weak interactions increases several-fold as the gas is made strongly interacting, which
cannot be explained by the Landauer theory of single-channel transport. We show that this phe-
nomenon is due to the multichannel Andreev reflections at the edges of the constriction, where the
interaction and confinement result in a superconducting state. Andreev processes convert atoms of
otherwise reflecting channels into the condensate propagating through the constriction, leading to
a significant excess conductance. Furthermore, we find the spin conductance being suppressed by
superconductivity; the agreement with experiment provides an additional support for our model.
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Transport measurements through one-dimensional bal-
listic channels provide invaluable insight into the complex
many-body systems by connecting microscopic quantum
dynamics with macroscopic observables, such as the con-
ductance Gn, spin conductance Gs and heat transport.
In the normal state, these quantities exhibit plateaus as
a function of the gate potential at integer multiples of
the conductance and heat conductance quantum, respec-
tively [1–3]. If the channel or leads are made supercon-
ducting, a wealth of other phenomena opens up. At
a normal-superconducting interface, a fermion incident
from the normal metal to the superconductor forms a
Cooper pair with another fermion so that they can en-
ter the condensate, while a hole gets reflected from the
interface – a process called Andreev reflection (AR) [4–
7]. AR lies at the heart of several interesting transport
phenomena, including Andreev bound states [6], Shiba
states [8], manifestation of the charge parity effect in su-
perconducting grains [9–11], quantum Andreev oscilla-
tions [12], superconducting spintronics [13], Cooper pair
splitting [14], as well as the celebrated Majorana states of
topological superconductors [15–19]. Despite the abun-
dance of exotic transport phenomena in electronic con-
densed matter systems, it has been only very recently
that the conductance properties of charge neutral mas-
sive particles have been measured, using an ultracold
Fermi gas of 6Li atoms, flowing through an optically cre-
ated one-dimensional constriction, realizing the limiting
case of a ballistic wire of a single transmitting transverse
channel [20–22], see Fig. 1. This system offers tunability
of the geometry and interactions, with the opportunity
to reach the strongly interacting regime, where the wire
becomes superconducting, contacted by normal leads in
the experiment of Ref. 22. In condensed matter envi-
ronments, similar systems of inhomogenous superconduc-
tivity have attracted significant attention, providing ac-
cess to phenomena on the verge between microscopic and
mesoscopic physics, such as phase-slips [23], non-local

FIG. 1. (Color online.) (a) Geometry of the ultracold
gas. The center of a trap is optically confined into a one-
dimensional constriction, surrounded by a two-dimensional
region, connected to three-dimensional reservoirs. (b) SC
pairing is possible between channels of arbitrarily high trans-
verse modes due to their non-zero coupling to the conden-
sate. (c) Transport through the one-dimensional constriction
at weak interactions: only the lowest channel is transmitting,
providing 1/h particle and spin conductances. (d) Pairing
at strong interactions lead to Andreev processes at the SC-
normal interface in higher channels as well, contributing sig-
nificantly to the particle conductance.

quantum correlations [24] and spatially resolved AR [32].
Superconducting islands immersed in a metallic environ-
ment may also comprise a platform for the study of the
superconductor-metal transition [25–31].

In the presence of weak interactions, the constriction
exhibits conductance plateaus of integer multiples of the
G0 = 1/h conductance quantum as a function of the
confinement strength, in accordance with several simi-
lar experiments in ballistic nanostructures [1, 2, 20, 33].
Rather surprisingly, however, making the gas strongly
interacting leads to larger than four-fold increase in the
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particle conductance of the lowest plateau of a single
transverse mode. This is in apparent contradiction with
the Blonder–Tinkham–Klapwijk (BTK) model of trans-
port through a single ballistic channel [33, 34]: although
interactions can make the channel superconducting (SC),
this can at most lead to a factor of 2 increase in the par-
ticle conductance, since in AR, each incident atom can
drag along at most another atom through the constric-
tion, as a Cooper pair.

We resolve this puzzle by associating anomalous con-
ductances with multichannel AR processes at the normal-
superconductor interfaces at the two ends of the constric-
tion (see Fig. 1). Confinement of the atoms within the
constriction significantly renormalizes their interactions,
leading to strong SC pairing [35]. This pairing field pen-
etrates into the normal leads, with several channels be-
low the Fermi energy. Atoms in higher transverse modes,
that would otherwise be reflected by the constriction, can
go through AR processes within this thin superconduct-
ing interface. As they become part of the condensate they
propagate through the junction as Cooper pairs [6, 16];
the resistance of the channel is thus entirely determined
by the interface [36]. Furthermore, as the interaction in-
creases, current is increasingly carried by Cooper pairs,
therefore the spin current approaches zero. This agrees
with the experimental observations of Ref. 22.

The experimental geometry is shown in Fig. 1 (a). The
central part of the gas is squeezed into two dimensions
using lithographic imprinting, whereas a narrower per-
pendicular laser beam pinches the middle of this region to
form a short one-dimensional ballistic quantum wire [20–
22]. The conductance of the wire is tunable either by tun-
ing the confinement frequencies νx0, νz0, or using a gate
potential Vg0, created by an additional, wide laser beam
along the z axis (see the caption of Fig. 2). By creating
a density or spin imbalance between the two sides of the
junction, the particle conductance Gn and spin conduc-
tance Gs can be determined by monitoring the relaxation
of the population imbalance in time, and making use of
the equation of states of the gas within the leads [20, 21].

We determine the superconducting profile in the con-
striction within the local density approximation (LDA),
whereby we consider a small part of the system of length
Ly, where the parameters of the gas are assumed to be
constant. We also take into account the renormalization
of interactions due to confinement effects. The constric-
tion is described by a harmonic Hamiltonian of trapping
frequencies ω = (ωx, ωz) = (νx, νz)/2π, local gate poten-
tial Vg and chemical potential µ,

Hkin =
∑
n,σ,q

ξn,σ,q a
†
n,σ,qan,σ,q, (1)

where ξn,q = ~2q2

2m −Vg−µσ + (nx+ 1
2 )~ωx+ (nz + 1

2 )~ωz
denotes the channel energies, and an,q,σ annihilates an
atom in channel n = (nx, nz), spin σ =↑, ↓ and mo-
mentum q along the y axis. The interaction between

FIG. 2. (Color online.) (a) SC pairing amplitude ∆0

(lines with symbols) across the constriction at different
interaction strengths shown in the inset of (b). Solid
lines indicate the energies of the transverse modes of dif-
ferent nz quantum numbers, with only nx = 0, 1 and
2 modes shown. At the edges of the constriction, the
gas is quasi-two dimensional, and the nx modes are al-
most completely degenerate. They split near the middle,
where the gas becomes quasi-one dimensional. (b) Vacuum
bound state energies along the constriction, renormalized
by the confinement. [Parameters: νx(y), νz(y) and Vg(y)
are approximated as Gaussians of HWHM (dx, dy, dV ) =
(4.7, 17.7, 15.1) µm, as in Ref. 22, and heights (νx0, νz0, Vg0) =
(23.2 kHz, 9.2 kHz, 0.625 µK = 13.0 kHz). The chemical po-
tential and temperature are µ = 8.5 kHz and T = 62 nK =
1.3 kHz. Cut-off in the channel number: nx, nz ≤ 8. λF and
kF,res denote the Fermi wavelength and wave number within
the reservoirs, respectively.]

the 6Li atoms is given by the standard point interaction
g δ(3)(r), where g is the bare interaction strength [37]. In
order to simplify the treatment of the interaction term,
it is worth going into the center of mass (COM) and
relative frame of the colliding atoms along the trapped
directions, (x1, x2) →

(
x1+x2

2 , x1 − x2

)
, and similary

for z, with the coordinates of the atoms denoted by
(x1, z1) and (x2, z2). One can thus transform the inter-
action Hamiltonian according to the unitary transforma-
tion 〈N,ν|n1,n2〉, where N = (Nx, Nz) and ν = (νx, νz)
denote the COM and relative harmonic oscillator quan-
tum states, and n1, n2 stand for those in the labora-
tory frame. These matrix elements are non-zero only for
n1 + n2 = N + ν combinations, due to energy conser-
vation. Since harmonic trapping and interactions both
conserve N and the COM momentum Q, the interaction
Hamiltonian can be decoupled exactly as [38]

Hint =
1

g̃

∑
N,Q

∆̂†N,Q∆̂N,Q, (2)

∆̂N,Q ≡ g̃
∑

n1,n2,k

V n1n2

N a†n1,↓,Q−kan2,↑,k, (3)

where the interaction strength g̃ = g/(lxLylz) of
energy dimension is defined using oscillator lengths
lx(z) =

√
~/mωx(z). The matrix elements V n1n2

N =
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ϕνx(0)ϕνz (0)〈N,ν|n1,n2〉, with ν = n1 + n2 −N, arise
from the matrix elements of the point-like interaction
potential [38] (see Supplementary Material). In the
previous expression, the value of the relative harmonic
oscillator wave function ϕν at the origin is given by

ϕν(0) = (−1)ν/2

(2π)1/4

√
1
2ν

(
ν
ν/2

)
for ν even and ϕν(0) = 0 for ν

odd.

We decouple Eq. (2) in a standard BCS approxima-
tion ∆N ≡ 〈∆̂N,Q=0〉. Although in general it could be
possible to have SC ordering in many COM modes, we
verified that for the experimental parameters of Ref. 22
considered here, only the N = 0 mode gains non-zero
pairing amplitude. Thus, in the following, we focus on
this case and leave the general discussion to the Supple-
mentary Material. The resulting Bogoliubov-de Gennes
Hamiltonian for quasi-particle excitations reads

HBdG =
∑
q

(
a†↑,q,a↓,−q

)(
ξ↑,q ∆†

∆ −ξ↓,q

)(
a↑,q
a†↓,−q

)
, (4)

in vectorial notation for the band indices. Here, (aσ,q)n =
an,σ,q denotes the vector of annihilation operators, the
SC matrix is given by ∆n1n2

= ∆0V
n1n2
0 , and the ma-

trix ξσ,q contains the band energies on its diagonal. Us-
ing a Bogoliubov transformation, one can now determine
the quasi-particle energies En,q. Then, in order to de-
termine the pairing amplitude ∆0, one needs to min-
imize the finite temperature BCS free energy FMF =
EMF −T

∑
n,q log

(
1 + e−En,q/T

)
at a fixed chemical po-

tential, as set by the leads. The mean-field condensa-

tion energy EMF =
∑

n,q (ξn,q − En,q) − |∆0|2
g̃ however

still contains the bare interaction term g̃, and a divergent
sum over excitation energies. In order to regularize this
term, we make use of the vacuum Bethe–Salpeter equa-
tions [39, 40], and express g in terms of physical quanti-
ties: the scattering length a or, equivalently, the vacuum
bound state energy EB (see Supplementary Material),

1

g
=

m

4π~2a
−
∫

d3q

(2π)3

m

~2q2 + i0+
(5)

=
1

lxlz

∫
dq

2π

∑
n1n2

|V n1n2
0 |2

EB −
(

~2q2

m + ~(n1 + n2)ω
) .

In contrast to three-dimensional systems, Eq. (5) always
has a vacuum bound state solution EB < 0 in quasi-
one dimensional gases, even on the attractive side of
the Feshbach resonance [37, 41, 42]. As we show in
Fig. 2 (b), EB strongly depends on the confining frequen-
cies as well as on the scattering length, and incorporates
the confinement-induced renormalization of the interac-
tion. Making use of Eq. (5), we can now express the
condensation energy in terms of EB , and, as we show in
the Supplementary Material, the resulting expression is

FIG. 3. (Color online.) Particle (a) and spin (b) conductance
as a function of the gate potential at at different interaction
strengths 1/(kF,res a) in the reservoirs. [Parameters: T =
62 nK = 1.3 kHz, µ = 8.5 kHz, (νx0, νz0) = (9.2, 23.2) kHz,
the geometry is identical to the one in Fig. 2.]

regular,

EMF =
∑
n,q

(ξn,q − En,q)−
∑

n1,n2,q

|∆0|2 |V n1n2
0 |2

EB −
(

~2q2

m + ~(n1 + n2)ω
) .

(6)
Fig. 2 (a) shows typical profiles of the SC order param-

eter ∆0(y) at various interaction strengths. Due to strong
confinement towards the middle of the constriction, the
bound state becomes significantly deeper in energy favor-
ing superconductivity in Eq. (6). Although in the middle
there is only one channel below the Fermi energy that
can contribute to pairing, higher transverse modes are
also coupled to the condensate in the SC-normal inter-
face through Eq. (4). At the largest interaction strengths,
the SC gap becomes comparable to the Fermi energy [43].
This strong pairing also extends around the central po-
tential hill of the constriction, providing a thin supercon-
ducting layer that is responsible for the excess particle
conductance seen in the experiment [22], due to multi-
channel Andreev processes. The length scale over which
these processes happen are of the order of the SC healing
length ξ̃s. Even though the width of this region is just
a few times the Fermi wavelength λF , the strong pairing
within the constriction leads to ξ̃s ∼ λF , and the AR
probabilities become non-negligible.

We determine the particle and spin conductance of the
waveguide in a Landauer picture [33], by calculating the
reflection and AR coefficients (rpp)n′n and (rhp)n′n, re-
spectively, describing reflections from channel n to n′,
with the p and h indices denoting particle and hole
states. To do this, we determine the eigenmodes of the
Bogoliubov–de Gennes Hamiltonian Eq. (4) at all incom-
ing energies ε, (see Supplementary Material). At the typ-
ical temperatures and chemical potential biases of the ex-
periment, the transport is well described by the zero bias
conductance and spin conductance [33],

Gn/s = −
∫
dε n′F (ε− µ) Tr

(
1− r†pprpp ± r†hprhp

)
,(7)
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FIG. 4. (Color online.) Particle (a) and spin (b) conduc-
tance as a function of the horizontal confinement at at differ-
ent interaction strengths and at a temperature T = 62 nK.
The conductance exhibits non-monotonic behavior due to the
onset of SC at large confinement strengths, an effect that
goes away at higher temperatures T = 109 nK = 2.3 kHz,
shown in the inset. [Parameters: µ = 8.5 kHz, (Vg0, νz0, ) =
(100 nK, 23.2 kHz), the geometry is identical to the one in
Fig. 2.]

where 1 denotes the unit matrix, nF stands for the Fermi
function, and the energy arguments of rpp(ε) and rph(ε)
are neglected for brevity. As can be seen from Eq. (7), AR
processes contribute to particle conductance, but they
decrease the spin conductance. The definition of the spin
conductance in Eq. (7) differs from that of Ref. 22 by a
factor of two, due to the ambiguity in defining the chemi-
cal potential difference in case of the spin current. Using
the definition above, the spin and particle conductances
are identical in the normal phase, and their deviation
indicates the onset of superconductivity.

As shown in Fig. 3, both Gs and Gn show the usual
Landauer quantization as a function of the gate poten-
tial Vg0 at weak interactions, as has been observed ex-
perimentally [20]. At increasing interaction strengths,
the constriction becomes superconducting, leading to in-
creased particle conductance and suppressed spin con-
ductance. As Vg0 is tuned, SC order appears first in
the middle of the constriction (see Fig. 2), thus only the
otherwise transmitting channels can participate in An-
dreev processes. This is the regime of the BTK theory,
and we observe well defined plateaus, within a factor of
two increase in conductance. At larger gate potentials,
however, the number of channels in the superconducting
interface increases, leading to a strong increase in conduc-
tance. Since the SC layer at the end of the wire is thin,
most channels cannot go through perfect ARs and they
only contribute a small fraction of a conductance quan-
tum to Gn. The plateaus thus become less well-defined.
Furthermore, in agreement with experiment [22], we find
that Gs depends non-monotonically on the gate poten-
tial in Fig. 3 (b). The reason for this is that as Vg0
increases, additional channels are pulled down below the

Fermi energy, and the system gains additional condensa-
tion energy by forming Cooper pairs in these channels.
As a result, SC pairing increases, and a larger fraction
of the current is carried by Cooper pairs, leading to a
sudden drop in Gs.

Fig. 4 shows Gs and Gn as a function of the horizontal
confinement νx0, exhibiting a broad conductance plateau
at (1/h) conductance at weak interactions. In agree-
ment with the experiment [22], the conductance plateau
is still somewhat visible at larger interaction strengths,
but pushed to a much larger value due to superconduc-
tivity (see the curves 1/(kF,resa) = −0.70 and −0.75).
However, we also find an interesting non-monotonicity
of the conductance curves at strong confinement, that
has not been observed experimentally. This behavior is
due to the confinement-induced renormalization of the
interaction, that leads to the onset of SC at tighter con-
finements. This is accompanied by a sudden decrease
in the spin conductance (see Fig. 4 (b)). This non-
monotonicity does not appear at higher temperature as
the confinement-induced onset of pairing is killed by tem-
perature fluctuations, see the inset of Fig. 4 (a). This
effect thus may be observable by further cooling the gas
in the experiment.

The comparison of Fig. 4 (a) and the inset also demon-
strates the sensitivity of the conductance curves to exper-
imental parameters, as also seen in Ref. 21. The tempera-
ture dependence of Gn and Gs is discussed in the Supple-
mentary Material. Both quantities stay at their normal
state value above the critical temperature of the constric-
tion, and they change sharply below it. In particular, Gn
can change severalfold within the ∼ 15 % experimental
error bars of the temperature and the chemical potential.
The reason is that ∆0 depends very sensitively on these
parameters near the onset of superconductivity, and its
value has a significant influence on transport. Further
important uncertainties arise from experimental aberra-
tions of the laser fields that form the constriction. Since
the transport is largely governed by an interface effect
at the edge of the constriction, these geometric factors
become important [21].

As an experimental test of our theory, we propose to
investigate the channel’s conductance at large, equal spin
imbalances in both leads, leading to the suppression of
the constriction’s superconductivity due to Fermi surface
mismatch. At large imbalances, the SC-normal transition
could thus be measured using the drop of anomalous par-
ticle conductances, and from the increase of spin conduc-
tance, to their respective values in the normal state [44–
46].

The above analysis of quantum transport assumes a
static order parameter in the superconducting region. Its
finite size may constrain the fluctuations of the number
of atoms in the region. The constrained particle num-
ber fluctuations enhances the fluctuations of phase of
the order parameter. These effects were studied exten-
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sively in the context of Coulomb blockade in a super-
conducting island coupled to a normal-metal lead, see,
e.g. Refs. 47 and 48. The overall conclusion is that at
large conductance of the interface the effects of Coulomb
blockade (i.e., constraints on the particle number) are
negligible. The corresponding energy scale turns out to
scale as exponent of −Gn/G0 if the large conductance of
a junction is achieved by increasing the number of con-
ducting channels [47, 48], and as a product of reflection
amplitudes in each of the channels, in case of an arbi-
trary (even small) number of highly-transparent chan-
nels [48, 49]. The phase fluctuations are small, and their
estimate in the Gaussian approximation is provided in
Section 6 of the Supplementary.

Conclusion – We demonstrated that the recently ob-
served anomalous transport measured in Ref. 22 is the re-
sult of a subtle interface effect at the ends of the ballistic
wire, that becomes superconducting due to confinement-
induced renormalization of interactions. Since SC pene-
trates in the quasi-two dimensional part of the lead, chan-
nels that would otherwise be reflected by the constric-
tion can participate in Andreev processes, thus delivering
Cooper pairs to the condensate which propagate through
the interior part of the channel as a spinless superfluid.
We could also explain non-monotonicities in the spin-
conductance curve as the gate potential was changed,
and predict additional non-monotonicities of the conduc-
tance as a function of the confinement frequency at low
temperatures.
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[56] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zw-
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