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The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment

of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of

fundamental physics. We compared the performance of four different QED potentials for various systems to

access the accuracy of QED calculations and to make prediction of highly charged ion properties urgently

needed for planning future experiments. We find that all four potentials give consistent and reliable results

for ions of interest. For the strongly bound electrons the nonlocal potentials are more accurate than the local

potential.

PACS numbers: 31.30.J-, 12.20.Ds

In 2015, a sympathetic cooling of Ar13+ with laser cooled

Be+ ions have been demonstrated [1], elevating highly

charged ions (HCI) to the realm of applications previously

limited to singly-charged ions currently used for atomic

clocks [2], quantum information [3], and other applications

requiring laser cooling and trapping. Optical transitions in

heavy many-electron HCIs have been recently proposed for

the development of ultra-precision atomic clocks and tests of

fundamental physics [4–8]. The experimental work toward

realization of these proposals has already started [9], but lo-

cating these ultra-narrow optical transitions has proven to be

very difficult. For most of these ions, no experimental data

exist and identification of their complicated atomic spectra is

a very difficult task unless accurate theoretical predictions are

available.

The required calculations also present a difficult task due

to very large cancellations of the energies of upper and lower

states. Since the ions of interest have relatively low degree of

ionization, 8+ to 18+, high-order electron correlation, Breit

interaction, and radiative quantum electrodynamic (QED) cor-

rections are all important, with cancellation of these contribu-

tions making accurate computations even more difficult [7].

As a result, it has become urgent to accurately include QED

corrections in the calculations of the electronic structure of

such many-electron ions, and evaluate the uncertainty associ-

ated with the QED treatment.

Non-empirical calculations of radiative corrections using

the QED perturbation theory for many-electron systems are

extremely complicated and time-consuming. To date, all-

order high-accuracy calculations can be performed only for

highly-charged few-electron ions (see, e.g., [10–23] and ref-

erences therein), or using the same perturbative methods for

many-electron systems, but with an effective screening poten-

tial [24–29]. This potential can be constructed using Dirac-

Hartree and Dirac-Fock-Slater (DFS) methods, or density

functional theory in the local density approximation. Ab ini-

tio QED methods are too complicated to be directly incor-

porated into the Dirac-Coulomb-Breit (DCB) many-electron

calculations. For this reason, numerous attempts have been

undertaken to propose simple methods for incorporating QED

corrections into the many-configuration Dirac-Fock, configu-

ration interaction Dirac-Fock, and relativistic many-body per-

turbation theory (MBPT) codes using different QED model

potentials (see, e.g., [30–41] and references therein).

Present work resolves the problem of accurate treatment of

quantum electrodynamic corrections for many-electron ions

of interest to metrology and tests of fundamental physics. For

the first time, the QED corrections are directly incorporated

into the most accurate treatment of the correlation corrections

for multivalent atoms: a high-precision relativistic hybrid ap-

proach that combines configuration interaction (CI) and a lin-

earized variant of the single-double coupled-cluster method,

generally referred to as the CI+all-order approach [42]. We

have applied our method to HCIs of interest to metrology,

carrying out all calculations with four different QED poten-

tials, and evaluated the accuracy of the QED results. Our

work presents the first systematic study of the QED accu-

racy for heavy multivalent HCIs and answers the following

questions: (1) how accurate are various model potentials; (2)

how much the QED correction in HCIs depends on the ver-

sion of the model potential being used; (3) how important is

to include the QED corrections when constructing the basis

set orbitals; (4) how do QED contributions in such many-

electron system depend on the treatment of the correlation

corrections. Using our new method, we give new prediction

for the 5f6p2 2F5/2 − 5f26p 2F9/2 clock transitions energy

of Cf15+, which is particularly well suited for the search for

variation of the fine-structure constant [8].

Our point of departure is the Dirac-Fock-Breit method used

to generate core and valence electronic orbitals. To form a

complete finite basis set for all coupled-cluster calculations,

we generate a large (N > 400) set of virtual orbitals. The
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QED correction is incorporated into the basis set orbital via

the model QED potentials described below. Then, we use the

linearized coupled-cluster approach to construct an effective

Hamiltonian that includes core-core and core-valence correc-

tions [42]. This procedure includes dominant classes of the

perturbation theory terms involving core excitations to all or-

ders. In constructing the effective Hamiltonian, all core-core

and core-valence single and double excitations to all basis

set orbitals are included. The QED corrections are added to

the one-electron matrix elements of the effective Hamiltonian,

which also includes Dirac-Fock-Breit potential of the core

and Coulomb-Breit interactions of the valence electrons. An

atomic spectrum is found by diagonalization of the effective

Hamiltonian in the configurational space, and the matrix ele-

ments for various (electric-dipole, magnetic-dipole, hyperfine,

etc.) operators are obtained using the resulting wave func-

tions. Our configuration space includes [21spdf18g] orbitals.

The CI space only has to include the valence electrons since

the core excitations from all core shells are already included

into the effective Hamiltonian. Therefore, the configuration

space can be made effectively complete for up to four valence

electrons. An algorithm for the efficient selection of dominant

configurations for three-four valence electrons and the corre-

sponding accuracy of the CI calculations has been discussed

in detail in [43].

Since of the main issue in evaluation the accuracy of the

QED is the question of which QED model potential gives

the best accuracy, we included four different QED potentials,

which differ in their treatment of the self-energy contribution.

We carried out all calculations and accuracy tests for all four

potentials.

The one-electron QED potential is separated into three con-

tributions:

V QED = V SE + VUehl + VWK , (1)

where V SE is the self-energy operator, VUehl and VWK are the

Uehling and Wichmann-Kroll parts of the vacuum polariza-

tion respectively. Both VUehl and VWK are local potentials,

so their treatment is rather straightforward and is the same in

all four versions of the calculations. The Uehling potential

can be evaluated by a direct numerical integration of the well-

known formula [44], or, more easily, by using the approximate

formulas from Ref. [45]. A direct numerical evaluation of the

Wichmann-Kroll potential VWK is rather complicated. For the

purpose of the present work, it is sufficient to use the approx-

imate formulas for the point-like nucleus from Ref. [46]. We

label four QED methods used to include the self-energy M1 –

M4 and briefly describe their main features below.

QED potential M1. Following [39, 47] we approximate

the one-electron SE operator as the sum of local V SE
loc and non-

local Vnl potentials

V SE = V SE
loc + Vnl , (2)

TABLE I: The self energy function F (αZ) for the ground states of

neutral alkali metals calculated using the methods M1 — M4. The

row “Exact” presents ab initio results from Ref. [24].

Method Na K Cs Na K Cs

xα = 2/3 xα = 1
M1 0.1829 0.0827 0.0163 0.2239 0.1095 0.0236

M2 0.1826 0.0826 0.0162 0.2237 0.1094 0.0236

M3 0.1911 0.0856 0.0166 0.2324 0.1128 0.0241

M4 0.1848 0.0831 0.0163 0.2253 0.1098 0.0236

Exact 0.1814 0.0829 0.0162 0.2233 0.1097 0.0235

where nonlocal potential is given in a separable form

Vnl =
n
∑

i,k=1

|φi〉Bik〈φk| , (3)

Here φi are so-called projector functions. The choice of these

functions depends on the method of construction of the non-

local potential Vnl and is described in details in [39]. The con-

stantsBik are chosen so that the matrix elements of the model

operatorV SE
ik calculated with hydrogen like wave functionsψi

have to be equal to matrix elements Qik of the symmetrized

exact one-loop energy-dependent SE operator Σ(ε) [48]:

〈ψi|V
SE|ψk〉 = Qik = 1

2
[Σ(εi) + Σ(εk)] . (4)

Introducing two matrices ∆Qik = Qik − 〈ψi|V
SE
loc |ψk〉 and

Dik = 〈φi|ψk〉, we find that

Bik =

n
∑

j,l=1

(D−1)ji〈ψj |∆Qjl|ψl〉(D
−1)lk . (5)

The local part of the SE potential in [39] was taken to be

V SE
loc,κ(r) = Aκ exp (−r/λC) , (6)

where the constant Aκ is chosen to reproduce the SE shift for

the lowest energy level at the given κ in the corresponding

H-like ion, and λC = ~/(mc). The QEDMOD computation

code based on this method was published in Ref. [47].

QED potential M2. In this approach we use the same

equations (2), (3), (5) to construct the SE potential, but use

radiative potential developed in [33, 49] for the local part. In

[33], the self-energy part of the total radiative potential is di-

vided into three terms:

V SE
loc = Φrad = Φmag +Φlf +Φhf , (7)

where the potentials Φmag, Φlf and Φhf are referred to as the

magnetic form factor, the low- and high-frequency parts of

the electric form factor, respectively, according to [33] . The

expressions for these potentials are given by Eqs. (7, 9, 10) in

[33]. Then, we obtain for the total SE potential

V SE = Φrad +

n
∑

i,k=1

|φi〉Bik 〈φk| . (8)
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TABLE II: The SE correction to the 4s− 4p and 4p− 4d, transition

energies in Cu-like ions (eV) for xα = 2/3. Rows “Exact” present

ab initio results from Ref. [28].

Ion Method 4s-4p 1

2

4s-4p 3

2

4p 1

2

-4d 3

2

4p 3

2

-4d 3

2

4p 3

2

-4d 5

2

Yb41+ M1 -1.28 -1.21 -0.11 -0.18 -0.14

M2 -1.28 -1.20 -0.11 -0.18 -0.14

M3 -1.28 -1.21 -0.12 -0.19 -0.15

M4 -1.28 -1.20 -0.11 -0.19 -0.14

Exact -1.28 -1.21 -0.11 -0.18 -0.14

U63+ M1 -4.22 -4.33 -0.90 -0.79 -0.63

M2 -4.23 -4.32 -0.89 -0.79 -0.63

M3 -4.12 -4.24 -0.97 -0.85 -0.71

M4 -4.23 -4.32 -0.89 -0.80 -0.64

Exact -4.24 -4.33 -0.88 -0.79 -0.65

The electric form factor contains some fitting parameters to

reproduce the SE corrections for 5s and 5p states of heavy H-

like ions. However the local radiative potential Φrad gives the

SE contribution for the 1s state with only 10% accuracy [33]

(see method M3 below). The SE potential (8) which contains

the nonlocal part in addition to the local radiative potential

reproduces the low lying SE corrections of the H-like ions

exactly.

QED potential M3 (local radiation potential). Here, we

neglect the nonlocal term in (8) and use local radiative po-

tential V SE = V SE
loc = Φrad from Eq. (7) as a full SE one-

electron potential introduced in [33]. This radiative potential

was widely used in many-electron calculations, for example,

see [34, 38, 41, 50] and references therein. Note that this lo-

cal potential was optimized for weakly bound valence states

of heavy neutral atoms and may be less accurate for strongly

bound ionic, or core states.

QED potential M4. This approach developed in [36] is

similar to the method M2, with the SE operator given by Eq. 8,

but using a different choice of the projector functionsB′

ik and

only diagonal matrix elements Qii.

To assess the accuracy of these potentials we compare the

SE values obtained using M1, M2, M3, and M4 methods with

the ab initio calculations of Refs. [24] and [28] respectively,

to which we refer as “exact”. Calculations of the SE shifts in

Refs. [24, 28] were performed with the local potential Veff(r):

Veff(r) = Vnuc(r) −

∞
∫

0

dr′
ρ(r′)

r>
+ xα

[ 81

32π2
rρ(r)

]1/3

, (9)

where Vnuc(r) is nuclear potential and ρ(r) is total electron

charge density. The choice of xα = 2/3 corresponds to the

Kohn-Sham potential, and xα = 1 is the DFS potential.

Our data were obtained by averaging the SE operator V SE

with the wave function of the valence state determined from

the Dirac equation with the potential Veff(r).
In Table I, the SE shifts for the ground ns states of the neu-

tral alkali atoms are given in terms of functionF (αZ), defined

TABLE III: A comparison of the QED corrections obtained using

methods M1 – M4 to the energies of Ba8+, Eu14+, and Cf15+ cal-

culated in the CI+all-order approach (cm−1). The column labeled

M1′ gives results of the CI+MBPT calculation. The column labeled

CI-M1 gives results of the calculation where QED potential was in-

cluded only in CI Hamiltonian. The first variant of the QED potential

(M1) was used in both of these calculations.

Ion Conf. Term CI-M1 M1′ M1 M2 M3 M4

Ba8+ 5s2 1S0 974 972 965 955 987 964

5p2 3P0 28 -30 -31 -34 -24 -33

5p2 3P1 56 5 4 2 13 4

5p2 1D2 113 69 69 69 81 71

5s5d 3D1 484 459 455 449 464 453

5s5p 3P0 503 471 469 462 483 467

5s5p 1P1 538 513 508 503 524 508

4f5s 3F2 472 438 435 430 439 434

4f5s 1F3 462 424 421 416 425 420

Eu14+ 4f26s 3.5 1025 780 778 766 762 774

4f26s 4.5 1024 779 777 766 761 773

4f3 4.5 0 -426 -421 -420 -474 -424

4f3 5.5 0 -425 -420 -419 -473 -423

Cf15+ 5f6p2 2F5/2 828 -265 -238 -249 -178 -266

5f26p 4I9/2 431 -781 -762 -769 -815 -788

5f6p2 2F7/2 737 -468 -353 -363 -319 -380

5f26p 2F5/2 464 -730 -722 -729 -766 -748

5f26p 2G7/2 512 -584 -655 -662 -683 -681

5f26p 4I11/2 425 -781 -762 -768 -814 -787

by

∆ESE =
α

π

(αZ)4

n3
F (αZ)mc2 . (10)

In Table II we present the SE corrections calculated for the

4s − 4p and 4p − 4d transition energies of Cu-like ions. Ta-

bles I and II illustrate that the SE shifts obtained using M1,

M2, and M4 methods are in very good agreement with exact

results, at the level of 1% or better for the M1 and M2 QED

potentials. We find 5-10% discrepancies between the data cal-

culated using the local radiative potential (method M3) and

exact values. We note that method M3 was recently modified

in Ref. [41], where more complicated and accurate finite size

correction to the radiative potential and additional fitting for

the d states were introduced. Comparisons for all alkali-metal

atoms and other Cu-like ions are given in the Supplemental

Material [51].

We selected three representative highly charge ions with

different electronic configurations as the test cases for our

method. All of these ions were included in the studies of the

applications of HCIs to the development of clocks and tests of

the variation of the fundamental constants [7, 8, 52, 53]. Ba8+

was selected owing to the availability of the experimental val-

ues for comparison, Eu14+ was chosen as the test case with the

f3 configuration, and Cf15+ has the largest sensitivity to the

alpha-variation in a system which satisfies all the requirement

for the development of accurate optical atomic clocks [8]. To
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TABLE IV: Transition energies (cm−1) for Ba8+, Eu14+, and Cf15+ calculated using the CI+all-order method and M1 version of QED potential.

Experimental results for Ba8+ are from Ref. [54]. Columns QED, 3e, and Total present QED corrections, contribution of the effective three-

electron interactions [55], and final theoretical values, respectively.

Conf. Term Expt. QED Total Diff. Conf. Term CI+all QED 3e Total Conf. Term QED 3e Total

Ba8+ Eu14+ Cf15+

5s2 1S0 0 0 0 4f25s 3.5 0 0 0 0 5f6p2 2F5/2 0 0 0

5s5p 3P0 116992 −496 117769 0.66% 4f3 4.5 3161 −1199 −700 1262 5f26p 2F9/2 −524 119 12898

5s5p 3P1 122812 −491 123492 0.55% 4f25s 4.5 2594 −1 1 2594 5f6p2 2F7/2 −115 −18 22018

5s5p 3P2 142812 −455 143661 0.59% 4f3 5.5 7275 −1198 −689 5388 5f26p 2F5/2 −484 29 27127

5s5p 1P1 175712 −457 175683 −0.02% 4f25s 5.5 6699 1 −4 6696 5f26p 2G7/2 −416 −45 29214

4f5s 3F2 237170 −530 236939 −0.10% 4f25s 1.5 9705 1 −3 9703 5f26p 4I11/2 −523 48 37081

4f5s 3F3 237691 −530 237457 −0.10% 4f3 6.5 11513 −1197 −683 9633 5f26p 4H9/2 −528 37 37901

4f5s 3F4 238547 −530 238294 −0.11% 4f25s 2.5 11300 1 −3 11298 5f26p 4G7/2 −511 54 40206

4f5s 1F3 245192 −544 245280 0.04% 4f25s 6.5 11420 3 −9 11414 5f26p 2D5/2 −525 45 42287

separate the QED corrections, the CI+all-order computations

were carried out with and without the QED corrections and

the difference was taken to be the QED contribution.

A comparison of the QED corrections to the energies of

Ba8+, Eu14+, and Cf15+ ions obtained using four QED po-

tentials is given in Table III. We would like to attract the

reader’s attention to unexpectedly large QED corrections for

the 5f state of Cf15+. One expects that the QED corrections

for the 4f and 5f orbitals are zero owing to no overlap with

the nucleus. However, the addition of the QED potential mod-

ifies the Dirac-Fock-Breit self-consistent potential leading to

changes of energies of the 5f orbitals. To confirm this, we

carried out a separate calculation, including the QED poten-

tial only in the CI Hamiltonian, and constructing orbitals with

no QED correction. These results are listed in Table III in the

column labeled CI-M1. The QED correction for the ground

5f6p2 2F5/2 state, 828 cm−1, is close to twice a QED correc-

tions for the 6p states, with zero contribution for the 5f states.

Including the QED in the potential used to construct the or-

bitals both reduces the QED correction for the 6p states and

leads to large (≈ −460cm−1) negative QED correction for the

5f orbital reversing the sign of the total QED correction of the

5f6p2 configuration.

As we discussed above, both M1 and M2 potentials give re-

sults within 1% of the “exact“ ab initio calculation, therefore,

we estimate the uncertainty in the QED correction as a differ-

ence of the M1 and M2 results listed in Table III, which does

not exceed 12 cm−1. This is far below the uncertainty in the

treatment of the Coulomb correlation. Therefore, it is impor-

tant to explore if QED correction depends on the accuracy of

the correlation correction treatment. To answer this question,

we carried out the same calculations using the less accurate

method that combines CI and MBPT [56, 57] approaches. In

the CI+MBPT method, effective Hamiltonian is constructed

using the second order of MBPT, omitting all high-order core-

core and core-valence correlation corrections included in the

CI+all-order method. CI+MBPT results are listed in col-

umn labeled M1′ The differences between the QED contri-

butions calculated in the CI+MBPT and CI-all-order meth-

ods are small for Ba8+ and Eu14+, but significant for J = 7
2

5f6p2 and 5f26p levels of Cf15+. These J = 7
2

levels are

strongly mixed and all-order corrections change weights of 6p
and 5f electrons in the many-electron wave function, which

affects the total QED correction for the configuration. There-

fore, we conclude that incorporation of the QED into the most

accurate treatment of the correlation correction is essential for

the accurate prediction of the properties of HCIs of interest.

The QED corrections to the energies of Ba8+, Eu14+,

Cf15+ calculated using the CI+all-order method with the first

version of the QED potential are given in Table IV to illus-

trate the relative size of the QED corrections to the energy lev-

els. All values are given relative to the corresponding ground

states. Final values that include QED corrections are given in

columns “Total”. Non-QED part of the calculation is the same

as in [7, 8, 52, 53]. The QED corrections are very significant

for low-lying 4f3 levels of Eu14+, so we have also included

the CI+all-order values without QED for clarity. The table

also include the effective three-electron (3e) interaction be-

tween valence electrons, recently treated in the framework of

the CI+all-order approach in [55]. Our final results for Ba8+

are in excellent agreement with experiment [54], demonstrat-

ing sub-% accuracy of the theoretical energy levels.

In summary, we find that accurate treatment of the QED

effects is essential for reliable prediction of the transition en-

ergies in HCIs with optical transitions. The QED corrections

in these ions are large enough to significantly affect the pre-

dictions of the transition wavelengths, but the correlation cor-

rection also has to be treated to high accuracy. Our results

show that the QED corrections obtained by all four QED po-

tentials are very similar, with the difference being smaller than

the estimated uncertainty in the treatment of the correlation

correction. We find that it is imperative to include the QED

correction both in the construction of the basis set orbitals

and into the CI Hamiltonian, in particular for the configura-

tions involving 5f electrons, as in the example of Cf ion. This

work also provides a revised value of the Cf15+ clock transi-

tion which has the highest enhancement of the α-variation [8]

in a system which also satisfies all criteria for the construction
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of the ultra-precise clock. Our method is generally applicable

to treat any HCIs with up to four valence electrons.
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