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We examine localization phenomena associated with generic, high entropy, states of a translation
invariant, one-dimensional spin ladder. At early times, we find slow growth of entanglement entropy
consistent with the known phenomenology of many-body localization in disordered, interacting
systems. At intermediate times, however, anomalous diffusion sets in, leading to full spin polarization
decay on an exponentially activated time scale. We identify a single length scale which parametrically
controls both the spin transport times and the apparent divergence of the susceptibility to spin glass
ordering. Ultimately, at the latest times, the exponentially slow anomalous diffusion gives way to
diffusive thermal behavior. We dub the intermediate dynamical behavior, which persists over many
orders of magnitude in time, quasi many-body localization.
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Understanding the interplay between interactions and
disorder in quantum dynamics is among the central chal-
lenges in many-body physics. Since its proposal in 1958
[1], Anderson localization has been observed in disor-
dered systems composed of photons, phonons, electrons
and ultracold atoms [2–4]. The physics of localization in
each of these systems can be largely understood as a sin-
gle particle phenomenon. Extending disordered localiza-
tion to the interacting many-body regime has attracted
significant recent attention [5–34], in part, because it rep-
resents a fundamental breakdown of quantum statistical
mechanics. This breakdown opens the door to a num-
ber of possibilities, including novel phase transitions in
high-energy states, the protection of quantum and topo-
logical orders, and even the possibility of quantum infor-
mation processing with disordered many-body systems
[17, 20, 23, 32].

A number of recent proposals have investigated the
possibility that localization can persist even in the ab-
sence of disorder [33–38]. This idea can be traced back
to early work on 3He defects dissolved in solid 4He
[39, 40]. There, it was proposed that a uniform system
of strongly interacting narrow bandwidth particles could
self-localize: a subset of the 3He defects form immobile
clusters which, in turn, block the diffusion of the remain-
ing particles. In more recent proposals, the distinction
between mobile and immobile particles is imposed man-
ually. These models typically involve two types of parti-
cles, light and heavy; the dynamics of the heavy particles
are significantly slower than those of the light particles
[34, 35]. At short time scales, interactions between the
two flavors serve as a random quasi-static background
potential for the light particles. If strong enough, this ef-
fective disorder can localize the light particles and it has
been argued that transport owing to the slow dynam-
ics of the heavy particles is insufficient to delocalize the
system. The central question which has emerged from
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FIG. 1. Schematic of the one-dimensional spin-1/2 ladder. σ-
spins reside in the top chain and S-spins in the bottom. Along
each chain, the spins are coupled by nearest neighbor XY (flip-
flop) interactions with strength J ′ and J respectively. Across
each rung, spins are coupled via Ising interactions of strength
Jz. The green dotted line indicates the position of the cut
used to divide the ladder when evaluating the entanglement
entropy.

these studies is whether randomness in the state of the
system can be enough to cause “self-localization” and,
what, precisely, does this mean?

In this Letter, we address this question by considering
a translation-invariant spin ladder (Fig. 1), whose two
legs carry, respectively, the fast and slow particles. We
find strong evidence for the existence of an exponentially
diverging time-scale, τ ∼ eL/ξ, which controls the decay
of spin polarization at the longest available wavevector,
k = 2π/L. We term this quasi many-body localization.
This should be contrasted with the behavior observed
in disordered, many-body localized spin chains where an
initial polarization fails to decay even at infinite time.

For any finite wavevector k, we observe full polar-
ization decay on a time-scale consistent with τ(k) ∼
e1/(kξ), independent of system size. Similar anoma-
lous diffusion laws are seen in generalized Sinai mod-
els, where non-interacting particles diffuse in a random
force-field [44, 45] and in the so-called spin-trapping of
one-dimensional ferromagnetic Bose gases [43]. The same
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exponential divergence with length scale ξ appears in the
system’s susceptibility to spin glass ordering [34]. In pre-
vious work, this has been taken to imply an instability
toward spontaneous many-body localization. However,
the presence of anomalous diffusion rules out this sce-
nario. Moreover, at the latest times, we find that the
exponentially slow anomalous diffusion ultimately gives
way to diffusive thermal behavior.

Consider a two-leg, spin-1/2, ladder as shown in Fig. 1,
with Hamiltonian,

H =
∑
〈ij〉

JS+
i S
−
j +

∑
〈ij〉

J ′σ+
i σ
−
j +

∑
i

JzS
z
i σ

z
i + h.c (1)

Spins of the lower (upper) chain are labeled S (σ) and
are coupled via a nearest neighbor XY interaction of
strength J (J ′). The two spin species are coupled across
a rung via Ising interactions of strength Jz [54]. In the
limit, J ′ → 0, the σ spins of the upper chain can be
viewed as classical variables that generate quenched dis-
order for their S-spin cousins. In this limit, fermion-
ization of the S-chain produces a non-interacting model
which localizes for typical configurations of the {σi}. The
introduction of a finite J ′ drives dynamics in the σ chain
and effectively induces interactions in the system.

Entanglement dynamics— We perform extensive exact
diagonalization studies of Eqn. (1). We consider periodic
systems up to N = 2L = 24 sites and work at fixed
filling νs/σ = 1/2, where ν is the fraction of S/σ-sites
with spin-up divided by L. All energies are normalized
to J = 1. Our first diagnostic is the growth of entan-
glement entropy Sent = −trρA log ρA across a central cut
(parallel to a rung, Fig. 1) that divides the system in sub-
regions A and B. Initial states are chosen to be random
product states within the relevant Hilbert space and we
average over ∼ 102−103 states depending on system size.
For short and intermediate time scales, much of the ob-
served entanglement dynamics can be understood within
the framework of spontaneous MBL [34]. As we will see,
it is only at the longest time scales that this framework
fails and anomalous diffusion sets in.

We begin with strong effective disorder, Jz = 10, and
measure the effect of a small J ′ � J . The result for
L = 4, J ′ = 10−3 is shown in Fig. 2a (see [41] for
J ′ = 10−2, 10−4). We observe three plateaus in the
growth of the entanglement entropy, which can be qual-
itatively understood as follows (Fig. 2c). There is an
initial growth of Sent until time t1 ∼ 1/J , arising from
the rapid expansion of wave packets to a size of order the
non-interacting localization length. The first plateau is
consistent with the entanglement behavior for single par-
ticle localized states and persists indefinitely for J ′ = 0.

At time-scale t′1 ∼ 1/J ′ (purple dashed lines, Fig. 2),
logarithmic growth of entanglement sets in [14, 17], in-
dicating that J ′ sets the time-scale of interactions. The
relevant dephasing process is shown in the inset of Fig. 2c:
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FIG. 2. (a) Growth of entanglement entropy for L = 4 sites,
with J ′ = 10−3 and Jz = 10. The entanglement entropy is
averaged over 30 random initial product states. (b) Analo-
gous data for L = 8 averaged over 100 random initial product
states. (c) Schematic short-time entanglement entropy be-
havior. At t1 ∼ 1/J a single particle localized (SPL) plateau
is observed. At time scales t′1 ∼ 1/J ′ interactions set in and
a logarithmic growth of entanglement begins. At t2 ∼ eL/J ′

this growth saturates for short chains unless it is pre-empted
by the final “plateau” at t3 ∼ 1/Jeff = (J ′2/Jz)

−1 [41]. (d)
Sent(t) for Heisenberg coupling along the ladders with L = 4,
Jz = 10, J ′ = 10−2, 10−3, 10−4, 10−5. Since there is no single-
particle limit, the initial dynamics are J ′ independent, but t3
continues to scale as 1/J ′2.

the single-particle states of the S-chain experience an en-
ergy shift dependent on their local occupation. This ef-
fective density-density interaction results from the hy-
bridization of σ-chain orbitals on the time-scale J ′. Log-
arithmic growth progresses until the entanglement satu-
rates at a second plateau, t2 ∼ eL/J ′. Up to now, the en-
tanglement dynamics are consistent with those observed
in disordered, MBL systems.

The second plateau corresponds to the complete, finite-
size, dephasing of the S-chain, while the dephasing dy-
namics of the slower σ-chain have yet to begin. In
principle, one might expect the third plateau to corre-
spond to the finite-size entanglement saturation of the
full system, with t3 also scaling as ∼ eL. However,
by numerically varying J ′, Jz, and L we find instead
that t3 ∼ (J ′2/Jz)−1, with a weak, sub-exponential, L-
dependence (black dashed lines, Fig. 2a,b) [41]. At larger
system sizes (Fig. 2b), the intermediate plateau disap-
pears since t2 ∼ eL while t3 does not; moreover, the
third “plateau” begins to exhibit a clear upward drift,
presaging additional dynamics to come.

This picture of entanglement growth is further con-
firmed by generalizing Eqn. (1) to Heisenberg couplings
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FIG. 3. A typical time trace of the decay of spin polarization.
The blue line shows Ds(t) while the red line shows Dσ(t). The
black dashed line indicates the position of t3 as determined
from the entanglement entropy and the solid black line/dot
depicts, τ , the time at which all polarization has fully decayed.
(inset) Depicts τ(k = 2π/L) as a function of system size for
Jz = 5, 10, 20 and filling fractions νs = 1/2, νs ≈ 1/3, 1/4.
For νs ≈ 1/3, 1/4 commensuration effects at finite size prevent
the choice of identical filling across sizes. For νs ≈ 1/3, the
sizes are L = 6, 8, 10 with νs = 1/2, 3/8, 3/10. For νs ≈ 1/4,
the sizes are N = 8, 10 with νs = 1/4, 1/5 respectively [41].
The data at νs ≈ 1/3, 1/4 are qualitatively consistent with
saturation at strong effective disorder.

within each chain. In particular, there is no longer a
non-interacting regime as is evidenced by the J ′ inde-
pendent short-time dynamics in Fig. 2d; meanwhile, the
final “plateau” continues to depend quadratically on J ′

with weak L-dependence. We return to the XY model
for the remainder of the manuscript.

Long-time dynamics— To understand the long-time
dynamics, it is helpful to turn to other physical quan-
tities. In particular, we probe the decay of spin polariza-
tion as well as the susceptibility, χ to spin glass ordering
[55]. As we will see, a single length scale, ξ, controls
both as we vary Jz and νs (holding νσ = 1/2, J ′ = 0.01).
Indeed, the time-scale τ for ultimate polarization decay
scales as ∼ eL/ξ = e2π/(kξ), while the susceptibility scales
as ∼ ecL/ξ, for a constant c. In the J ′ → 0 limit, Jz
and νs directly control the effective disorder and thus
the localization length ξ0. From the observed behavior
of ξ(Jz, νs), we surmise that it is continuously connected
to ξ0 as one turns off J ′.

Polarization decay—The decay of polarization Ds

(Dσ) is a measure of spin transport at infinite tempera-
ture [11]. As each flavor of spin is separately conserved,
we perturb the system with a small inhomogeneous spin
modulation of the form F̂s(k) =

∑
j S

z
j e
ikj (similarly for

F̂σ) and measure the time-dependent relaxation of this
polarization,

Ds/σ(k, t) =
〈
e−iHtF †s/σ(k)eiHtFs/σ(k)

〉
(2)

where the average is taken at infinite temperature.
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FIG. 4. Depicts τ as a function k. Data are obtained at
Jz = 5, J ′ = 0.01. (a) Red circles correspond to L = 10
and filling νs = 1/2 while (b) blue circles correspond to L =
10, νs = 1/5. To confirm the L-independence of the decay
time, we also show data for L = 6, 8, 12 at a variety of k.
The time-scale for diffusive decay (as extrapolated from larger
J ′ data) is shown as the black dashed line in (a); for small
systems, τdiffusion is so slow that the relaxation is limited by
e1/(kξ). However, for the largest system sizes, we observe the
exponential quasi-MBL behavior to be cut-off by an extremely
slow diffusion.

A typical time-series for Ds/σ at the longest wave-
length k = 2π/L is depicted in Figure 3. The most re-
markable feature is the clarity of the various time scales.
For example, the dashed line indicates the timescale t3 as
extracted from the corresponding entanglement entropy
[41]. At this point, it is clear that there is still significant
residual polarization. However, it is also clear, that this
polarization fully decays by time τ ∼ 109/J . The para-
metric dependence of τ(k = 2π/L) is illustrated in the
inset of Fig. 3, where we plot its L-dependence at fixed
Jz and νs; τ scales exponentially in system size which
defines the length scale ξ(Jz, νs) as the inverse slope of
the curves. For weak effective disorder νs = 1/2, Jz = 5,
we find ξw = 0.54 ± 0.05. All other parameters corre-
spond to stronger disorder, producing a shorter length,
which saturates at ξs = 0.29 ± 0.03 (extracted from
νs = 1/2, Jz = 20).

The existence of the length-scale ξ suggests that finite
wavelength inhomogeneities decay on a finite time-scale
τ(k) ∼ e2π/(kξ). To test this hypothesis, we consider the
ultimate decay time as a function of k for fixed L. For
L = 10, Jz = 5, νs = 1/2, 1/5 this data (circles) is plotted
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in Figure 4 and is consistent with the proposed functional
form (dashed line). This provides an independent means
to extract ξ. We obtain ξw = 0.57± 0.1 and ξs = 0.31±
0.08 in agreement with the two lengths quoted above. To
ensure that there is no system-size dependence lurking,
we also plot τ(k) for L = 6, 8, 12. At the shared k value of
π/3, π/2, 2π/3, π, we find decay times which are identical
(within error bars), further confirming the L independent
nature of the polarization decay. This demonstrates that
all finite-k perturbations decay in a finite time.

The behavior τ(k) ∼ e2π/(kξ) contrasts with many-
body localization where inhomogeneities never decay.
Given that polarization does decay, one expects diffusion
to set in at long enough wavelengths. This is consistent
with the observation of a crossover to diffusive decay,
τ(k) ∼ 1/k2 for J ′ > 0.3, wherein we extract a diffu-
sion constant D ≈ 0.013J ′2/Jz [41]. Extrapolating to
J ′ = 0.01 yields the black dashed curve in Fig. 4a, which
cuts off the exponentially growing decay times for wave-
lengths 2π/k & 9. This is in strikingly good agreement
with the three order of magnitude suppression of τ at the
largest numerically accessible wavelength 2π/k = 12.

We dub the exponentially slow dynamical regime
quasi-MBL.

Susceptibility—Finally, following [34], we probe our
system’s susceptibility to spin glass ordering by intro-
ducing a perturbation of the form

HW =
∑
i

hziS
z
i +

∑
i

h′zi σ
z
i (3)

where h, h′ are independent random fields drawn from
a uniform distribution of width W . To quantify the
system’s response to HW , we consider an observable
∆ρψ = 1

N

∑N
i |〈ψ|Szi+1 − Szi |ψ〉| which measures the

inhomogeneity of the spin polarization in the S-chain
within an eigenstate ψ. We perform exact diagonaliza-
tion on HT = H + HW with νs = νσ = 1/2, J ′ = 0.01,
Jz = 5, 10, 20, 40 and 10−6 < W < 10−4. We average
over 103 disorder realization for N = 8, 12 and over 102

realizations for N = 16; we also average ∆ρ over 10 eigen-
states centered around energy density J/4. Our results
are depicted in Figure 5. The inset indicates that ρ(W )
is in the linear response regime as all data lie at slope
one in the log-log plot.

It has been argued [34] that an exponential in system
size divergence of χ = dρ/dW reflects an instability to-
ward many-body localization. We indeed observe such a
dependence (Fig. 5). However, as previously discussed,
we do not view the system as truly MBL, since spin trans-
port occurs, albeit slowly, across the full system. In fact,
the transport time appears to be precisely correlated with
the divergence of the spin glass susceptibility. An analy-
sis of the exponential dependence of χ ∼ eL/ξ′ also yields
an effective length scale (ξ′) as a function of Jz (Fig. 5);
for Jz = 5, ξ′ = 1.39 ± 0.07 and for Jz = 10, 20, 40,

ρ

W/J

Jz = 5
Jz = 10

Jz = 20

Jz = 40

864
L

χ

FIG. 5. (a) Depicts χ, the susceptibility to spin glass or-
dering as a function of system size L for ν = 1/2 and
Jz = 5, 10, 20, 40. (inset) Shows the raw ρ(W ) data used
to generate the main figure. The value of χ is taken to be
that of ρ at W = 10−6. The slope of unity on the log-log
plot demonstrates that we are clearly in the linear response
regime.

ξ′ = 0.77± 0.08. Interestingly, this length is in fact pro-
portional to ξ, with a proportionality factor c ≈ 2.6±0.1
across the data.
Discussion— For a finite size system, translation in-

variance requires that at infinite time, any finite wave-
length polarization must decay to zero. This follows im-
mediately from Eqn. (2) after inserting a resolution of
the identity and dephasing off-diagonal matrix elements
[42]:

Ds/σ(∞) =
∑
ψ

〈ψ|F †s/σ |ψ〉 〈ψ|Fs/σ |ψ〉 . (4)

As Fs/σ carries non-zero momentum its diagonal ma-
trix elements vanish between translation-invariant many-
body eigenstates, |ψ〉. Thus, although disordered MBL
systems exhibit finite residual polarization, we cannot
expect that of any translation-invariant system. This al-
gebraic truth does not rule out the possibility that the de-
cay time, τ(k), of finite wavelength polarization diverges
with the system size. This is the natural definition of
translation-invariant many-body localization.

While numerically accessible system sizes prohibit a
complete characterization, we do not believe that such
behavior holds. Rather, we find a finite decay time τ(k)
for all k. All decay times, as well as the spin glass suscep-
tibility χ, are controlled by a single physical length scale
ξ. Crucially, this length scale is not simply related to the
many-body density of states (inverse entropy). As pre-
viously discussed, we surmise that ξ is connected to the
true localization length in the J ′ → 0 limit [41], despite
the fact that the system is not localized for any J ′ 6= 0.
We have also numerically studied the behavior when the
hoppings are closer in magnitude (but not equal as then
the model is integrable and different physics will apply);
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we find that relaxation onsets more rapidly at time scales
consistent with diffusive transport, τD ∼ L2/J ′2 with no
obvious sign of a phase transition.

In summary, we provide evidence that translation-
invariant systems can exhibit quasi-MBL behavior inter-
mediate between full localization and diffusion. This be-
havior is characterized by polarization decay on a time-
scale τ(k) ∼ e1/(kξ), which in real space, corresponds to
an anomalous random walk with a mean square devia-
tion growing as the log-squared of time. Such anomalous
diffusion is reminiscent of glass-like dynamics [33], spin-
trapping in a one-dimensional ferromagnetic Bose gas
[43], as well as generalized Sinai diffusion models [44, 45].
It may also have qualitative similarities to the behavior
observed in pre-thermalizing 1D multi-component bosons
[46, 47] and in the glassy dynamics of asymmetric bosonic
mixtures [48, 49]. On the experimental front, quasi
many-body localization can be readily explored in a num-
ber of quantum optical systems, including trapped ions
[50], polar molecules [51] and ultracold atoms [52].
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