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We construct a scheme for self-replicating square clusters of particles in two spatial dimensions,
and validate it with computer simulations in a finite-temperature heat bath. We find that the self-
replication reactions propagate through the bath in the form of Fisher waves. Our model reflects
existing colloidal systems, but is simple enough to allow simulation of many generations and thereby
the first study of evolutionary dynamics in an artificial system. By introducing spatially localized
mutations in the replication rules, we show that the mutated cluster population can survive and
spread with the expanding front in circular sectors of the colony.

PACS numbers: 81.05.Zx, 81.16.Dn, 87.23.Cc, 82.70.Dd

Self-replication followed by mutation and evolution is a
key driver of biological complexity. The change of fitness
landscapes due to environmental conditions creates the
driving force for the evolution of new functionalities. A
holy grail of modern materials science research is to emu-
late this natural evolution of functionality, and to design
materials systems where evolution based discovery strate-
gies could apply. Creating a population dynamics in ma-
terials requires both designing efficient self-replication,
as well as some mechanism for mutating the dynamics so
that novel structures can arise.

Recently, initial steps towards creating self-replicating
artificial materials have been taken using DNA nanotech-
nology [1–4], light switchable colloidal dimers [5] or mag-
netic dipolar colloids [6]. With DNA based interactions,
hybridization causes specific, short range interactions be-
tween nano/micro scale components, and both the speci-
ficity [7, 8] and the timescales [9] of the interactions
between strands can be chosen by tuning the DNA se-
quences. A striking study [2] uses chains of DNA tiles
as templates for replication, achieving a few generations
of replication in experiments. More recently, these ideas
were extended to ring structures [4] of DNA tile motifs.
A theoretical study [10] demonstrated how specific in-
teractions can lead to self-replication of finite clusters of
particles.

Up until now, there has been no explicit demonstra-
tion of mutation/amplification cycles in a self-replicating
material, either theoretically or experimentally. A major
challenge has been the difficulty in either experiments or
simulations of producing enough replication cycles that
a meaningful mutation could be carried out. In contrast,
selected evolution of DNA or RNA is a common tech-
nology due to the highly efficient and optimized Poly-
merase Chain Reaction [11]. In this paper, we introduce a
model of self-replicating clusters that is computationally
tractable enough that we can explicitly study the emer-
gence of mutations. We demonstrate a phenomenology
that is strikingly similar to the development of mutations

in growing bacterial colonies [12–14].

Our system consists of colloids confined to two dimen-
sions. The self-replicating objects are colloidal clusters
that make their progeny through a geometrical templat-
ing scheme introduced earlier [10]. Our model is directly
related to recent experiments on clusters of identical col-
loidal particles [15]. To allow the complexity of self-
replication and mutation/selection phenomena, we model
colloids coated with specific DNA strands such as ones al-
ready realized in self-assembly experiments [16–22]. The
fact that the system is two dimensional gives substan-
tial computational savings, making it possible to simu-
late large systems with > 20 generations (see SI section
I [23] for the definition) of progeny.

We find two striking features of our model of self-
replicating clusters: First, when the clusters grow expo-
nentially, they deplete monomers from the bath causing
the formation of a propagating front obeying Fisher’s dy-
namics [24, 25]. Second, a single cluster with a changed
replication rule (“mutation”) can initiate a population
change within the expanding front and form a sector of
mutated structures (“genetic drift”). As we will argue
below, we believe our model presents the first observa-
tion of evolutionary dynamics in a controlled artificial
self-replicating system.

In our system, the surface of each colloid is covered
by DNA strands which mediate specific short range at-
traction between pairs of particles. We choose to con-
sider replication of square clusters, as a simple example
that is not constrained to a linear geometry. When each
particle in the parent cluster can attach at most one
complementary monomer, geometrical constraints pre-
vent direct templating from a single parent. Inspired
by previous work [10], we circumvent this problem by
templating a square cluster between two parent square
clusters, Fig. 1(a). The self-replication scheme begins
when two parent square clusters, each composed of A,
B particle species (stage I), each attach complementary
particles, species A’, B’, respectively, from the monomer
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FIG. 1. (a) Self-replication scheme of square clusters with
nc = 3. The reaction starts with two square clusters
composed of A and B particle species, having permanent
bonds (stage I). Complementary monomers (A’,B’) attach to
the clusters (stage II) and attraction among the attached
monomers leads to templating of another 4-mer structure
(stage III). The thus formed complementary cluster templates
a new cluster in the same way, thereby closing the hypercycle
(stages IV to VI). (b) Interaction matrix of particle species.
Blue matrix entries represent attractive interaction, and white
entries represent repulsive force, while the inscribed number
specifies the species valence.

bath (see Fig. 1(b)), thereby forming two independent
hairy squares (stage II). Then, attraction between A’
and B’ allows bonding of the two hairy clusters (stage
III). The formed structure of complementary particles is
detached from the parents (stage IV), forming a square.
The square made of A’,B’ particles now becomes a parent
involved in templating its complementary (A,B) square
thus closing the hypercycle (stages V, VI).

The detachment step between stages III and IV
(Fig. 1(a)) is critical in self-replication reactions [26].
In our simulations, we model the detachment process
as in Ref.[10]: When the number of bonds n between
attached monomers (while they are attached to their re-
spective parents) reaches the critical value nc, the bonds
between parent particles and monomers are removed and
the existing bonds between the monomers become irre-
versible (see SI section II [23]). In practice, n can increase
by more than one within a single simulation timestep.
Therefore, for a chosen nc, a newly formed structure can
have n ≥ nc and a non-square geometry, and can be-
come a parent for future reactions that can significantly
deviate from the scheme in Fig. 1(a).

To investigate emergent behavior in this system, we
perform Brownian dynamics simulations. The dynam-
ics of the i-th particle is governed by the over-damped
Langevin equation

∂tri = −µ
∑
j 6=i

∇U(rij) + ηi(t), (1)

where ri is its position vector, rij ≡ |ri − rj |, and µ
is the mobility. The short range interaction between i-
th and j-th particle U(rij) is given by a modified Morse
potential in case of attraction, and harmonic potential
in case of repulsion (see SI section III [23]). The in-
teraction range is 1.05d in case of attraction and 1.0d
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FIG. 2. Brownian dynamics simulation of self-replicating col-
loidal clusters using 1652 colloidal particles. (a) A snapshot
from our simulation: Particles are colored according to their
species (Fig. 1(a)) if they comprise a cluster; otherwise they
are gray. This snapshot shows successful replication of desired
4-mer (square) cluster as well as other undesired 5-mer and
6-mer structures. (b) Example of frequent replication path-
ways leading to formation of each of the 4-, 5- and 6-mers.
(c) Population of 4-mers, 5-mers and 6-mers as a function of
time.

in case of repulsion, where d is the particle diameter.
The implementation of short ranged interactions is val-
idated against recent experimental results on colloidal
clusters in 2d [15] (see SI section IV [23]). The noise
term ηi(t) satisfies the fluctuation-dissipation relation〈
ηiα(t)ηjβ(t′)

〉
= 2Dδijδαβδ(t − t′) where α, β = x, y,

and D is the diffusion constant of monomers. In our sim-
ulation, we measure length in units of particle diameter
d, time in d2/D, energy in kBT .

We simulate a system of N = 1652 particles with an
area fraction φ = 0.193 in a square box (L = 82d) with
periodic boundary conditions, and we keep the tempera-
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FIG. 3. Simulation snapshots taken at ∆t = 100d2/D intervals. Clusters with at least two attached monomers are colored red
(active parents) and clusters with less than two attached monomers are colored blue (inactive parents). Dashed lines (∝ t) are
guides to the eye.

ture fixed. Sixteen out of N particles comprise four ini-
tial parent square clusters placed around the center. We
set nc = 3, so that detachment reaction occurs when at
least three bonds form between attached monomers. To
simplify simulations, we do not allow the free monomers
to interact with each other. Fig. 2(a) shows a typical
snapshot from our simulation. As clusters replicate and
diffuse, they form a circular colony. The colony mainly
contains our designed structure, the square, but we also
find geometrically distinct structures of 4, 5 or 6 particles,
whose formation is allowed by the detachment criterion
nc = 3. Since there is no attraction between particles
of the same species (Fig. 1(b)), 5-mers can only exist
as chains while 4- and 6-mers only form squares and
hexagons, respectively (see insets of panel Fig. 2 (a)).
Examples of frequently observed replication pathways of
these structures are shown in Fig. 2(b) (see SI section V
[23]). Fig. 2(c) shows the time dependence of the popula-
tion of each of these structures, demonstrating that with
nc = 3 the square clusters dominate.

Using our observation of self-replication over genera-
tions we analyze properties of spatiotemporal structure
of the colony. Fig. 3 illustrates the spatial distribution of
replication reactions. We find that a good indicator [27]
of where the replication happens is the location of par-
ents with at least two attached monomers, and we label
such parents “active” (colored red). Most of the active
parents localize in a thin band at the boundary of the
colony, whereas most of the clusters in the interior are
“inactive” (colored blue).

To understand the spatial spreading of the colony,
we consider the time evolution of a coarse-grained
population density field of clusters u(r, t) through a
Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) type
of reaction-diffusion equation [24, 25]:

∂u

∂t
= αu(1− u) +Deff∇2u, (2)

with initial growth rate α, and an effective diffusion con-
stant Deff . This equation has an asymptotic traveling
wave solution of circular symmetry u(r, t) = f(r−vfrontt),
where the front velocity

vfront = 2
√
Deffα (3)

at large r [28, 29]. Fig. 4(a) shows that the colony ra-
dius moves at constant velocity, measured to be vfront =
0.08D/d. We also directly measure the initial growth
rate of the colony to be α = 1.5× 10−2D/d2, giving the
estimate Deff ≈ 0.11D from Eq. (3). To validate the F-
KPP dynamics entailed by Eq. (3), from our simulations
we directly measure the effective diffusion constant of all
clusters, Dsim

eff , which takes into account that clusters are
found in different stages of self-replication reaction, Fig. 1
(a) (see SI section VI [23]). We find Dsim

eff = 0.12±0.04D,
in good agreement with the estimated Deff .

The F-KPP dynamics implies a length scale

λ =
√
Deff/α (4)

which sets the width of the traveling front (Fisher wave),
estimated here to be λ = 3d. When the system size L is
much less than λ, one can only observe an exponential
growth of the colony without formation of a front. In the
opposite regime λ � L one observes an initial exponen-
tial growth followed by formation of a propagating front
and growth of colony as a power-law td with d the spa-
tial dimension. Our simulations are in the latter regime,
exhibiting the propagation of fully-formed front whose
estimated width of order λ = 3d is consistent with the
width of region populated by active parents in Fig. 3 (see
SI section VII [23]). In Fig. 4(b) we show the colony size,
i.e., the total population of all clusters over time, aver-
aged over 10 independent simulations. The growth curve
is quadratic in time (after initial exponential expansion)
as expected from F-KPP dynamics. An intuitive expla-
nation of this power-law follows from assuming that the



4

102

Time (d2/D)

101

102

To
ta

lp
op

ul
at

io
n

Simulation
∝ t2

100 200 300 400 500
Time (d2/D)

0

10

20

30

Ra
di

us
of

co
lo

ny

Simulation
vfront = 0.08

(a) (b)

FIG. 4. (a) Log-log plot of the total population as a function
of time. The solid line is the average over 10 independent
simulations. The shaded region shows one standard deviation
above and below the average, while the dashed line (∝ t2) is
the best linear fit. (b) Radius of the circular colony as func-
tion of time. The solid line is the average over 10 independent
simulations. The shaded region shows one standard deviation
above and below the average. The dashed line is the best lin-
ear fit, suggesting emergence of expanding front with constant
velocity.

replication process occurs within the front which has a
constant width. Then the number of newly created clus-
ters per unit time at time t is proportional to

√
Nclust(t),

which leads to the quadratic population growth.

Finally, we consider mutations in the cluster popula-
tion. We seek to define a “mutation” as a hereditary
trait that leads to altered properties. Within our model,
the size and shape of a parent will not persist through
many generations of progeny (see Fig. 2(b)). We can
however define a mutation as a change of the replica-
tion rule nc = 3 into nc = 4: First, this property can
be inherited by every daughter of the mutated cluster
(a dominant trait); second, a mutated population has a
strikingly different distribution of cluster sizes than the
non-mutated population. In particular, nc = 3 popu-
lation is majority 4-mers with only ∼ 10% of 5-mers
(see Fig. 2(c) and S2(a)), while mutated population with
nc = 4 has ∼ 70% of 5-mers (see Fig. S2(b)). To inves-
tigate mutations, we start from the colony in the second
panel of Fig. 3, and select a single square cluster at the
edge of colony, Fig. 5(a). We mutate this cluster, leaving
all others intact. Fig. 5 shows two different outcomes of
13 simulations started with this initial condition: In pan-
els (b1-b2), the population of mutated structures grows
at the expanding front and dominates in a circular sec-
tor. As expected, the population in the sector is majority
5-mers. In contrast, in panels (c1-c2) the mutation goes
extinct, since the progeny of the mutated cluster stops

nc=4 nc=3 
(a)

(c1)

t=t0+Δt

(b1)

(c2)

(b2)

t=t0+2Δt t=t0+3Δt

FIG. 5. (a) The second snapshot (t = t0 + ∆t) of Fig. 3 is
shown, where one square cluster (orange) at the boundary is
mutated by assigning it nc = 4. All other clusters (green)
retain nc = 3. (b1-b2) and (c1-c2) are results from two inde-
pendent simulations started from (a). The mutated progeny
either dominates in a circular sector of the colony (b1) and
survives with expanding front (b2); or stays within the colony
bulk (c1) and stops reproducing (c2).

reproducing in the monomer-deficient colony bulk.
To judge how mutation affects the “fitness” of popu-

lation, in each simulation we trace the progeny of the
mutated cluster and the progeny of several randomly se-
lected non-mutated clusters at the opposite side of the
colony front. The outcomes indicate that the survival
probability for the mutated lineage is lower (62%± 15%)
than for the non-mutated (83% ± 11%) (for details see
SI section VIII [23]). We relate the lowered fitness of
mutated population to the fact that the mutated clus-
ters on average need to consume more monomers com-
pared to their non-mutated competitors on the front.
The competitive advantage can be observed by compar-
ing a purely non-mutated and a purely mutated colony:
The rate of monomer consumption is similar (Fig. S6(b)),
while the growth rate of the mutated colony lags behind
(Fig. S6(c)) as described in SI section VIII. The fact that
survival of a (non-)mutated cluster lineage is subject to
randomness by definition entails “genetic drift”. In our
system we directly observe the genetic drift because lin-
eages propagate spatially with the Fisher’s wave.

In summary, we have introduced a model of self-
replicating colloidal clusters which despite its simplicity
shows remarkably rich behavior including Fisher wave
propagation, and the possibility of studying mutations,
fitness and genetic drift, as some of key components
of evolutionary dynamics. Very recently, propagating
reaction-diffusion fronts have been observed in different
synthetic self-replicating systems at the molecular scale
[30, 31]. Our system relates to an artificial material at
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the mesoscale. We remark that the basic ingredients re-
quired to experimentally realize our system are becoming
available. Controlled valence of isotropic mesoscale par-
ticles has been demonstrated [7, 32]. We believe that the
detachment step could be realized with time-dependent
interactions that can either strengthen (among attached
monomers) or weaken (between the parent cluster and
attached monomers) in time [33], which require consump-
tion of energy. A first step towards time-dependent in-
teractions has been realized between nanoparticles us-
ing complex strand-displacement reactions that rely on
a DNA fuel source [9, 34]. An alternative is to glob-
ally cycle temperature and light to achieve the detach-
ment process and cluster stabilization, a strategy already
used in some studies [1, 2]. The final ingredient — im-
plementation of the mutation mechanism — is still an
open problem. We require a change in the characteristic
time of the detachment process, therefore changing which
structure is preferred by the replication process. At the
same time, this change in the replication process needs
to be inherited by daughters. Although a specific mech-
anism for this is unclear at the moment, we believe the
flexibility provided by the DNA nanotechnology is suffi-
cient to realize it. Our concept is, however, applicable to
artificial systems at different scales and opens a new door
for implementing evolutionary dynamics in experiments.
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