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Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic
quantum phase transitions (QPTs) in clean metals are generally first-order due to the coupling of the magneti-
zation to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase
transition. For disordered metals BKV theory predicts that the second order nature of the QPT is restored
because the electronic soft modes change their nature from ballistic to diffusive. Our low-temperature magneti-
zation study identifies the ferromagnetic QPT in the disordered metal UCo1−xFexGe as the first clear example
that exhibits the associated critical exponents predicted by BKV theory.

PACS numbers: 71.10.Ay, 71.27.+a, 74.62.Bf

Quantum phase transitions (QPTs) have been a topic of in-
tense research efforts for several decades [1–4]. Here the ear-
liest theory of a QPT was provided by Stoner in 1938 for itin-
erant ferromagnets [5]. Due to the exotic behavior frequently
observed in the vicinity of ferromagnetic QPTs in metals, such
as unconventional spin-triplet superconductivity [6], partial
magnetic order [7], and topological non-Fermi liquid behav-
ior [8], their theoretical understanding is at the origin of mod-
ern solid state physics. In their seminal work, Hertz and later
Millis predicted that ferromagnetic QPTs are continuous, or
second-order, and calculated the associated critical exponents
[9, 10]. However, at the turn of the century, an extension of the
Hertz-Millis theory by Belitz, Kirkpatrick and Votja (BKV)
demonstrated in remarkable agreement with experiments that
a QPT in two and three dimensions from a paramagnetic to
homogeneous ferromagnetic state is generically discontinu-
ous (or first-order) provided that the underlying metal is suffi-
ciently clean [11]. The responsible mechanism is the coupling
of the magnetization to electronic soft modes that universally
exist in metals, which in turn leads to a fluctuation-induced
first-order transition. We note that fluctuation-induced first-
order transitions are broadly important in solid-state physics
and even beyond [12].

BKV theory further reveals the existence of a tricritical
point that separates a line of first-order transitions at low tem-
perature from a line of second order transitions at higher tem-
peratures when the non-thermal control parameter x that pro-
vides access to the QPT is varied. Including the effects of
an external magnetic field H in the BKV calculations gener-
ates tricritical wings that emerge from the tricritical point as a
function of magnetic field [13]. The resulting unique temper-
ature T vs x and H phase diagram has been observed in ex-
periments on many clean ferromagnetic metals, making BKV
theory one of the most successful theories of QPTs [4].

Because in a large number of itinerant ferromagnets the
QPT may be accessed via chemical substitution, and some
materials show incipient disorder, considering the effect of
disorder on the nature of a ferromagnetic QPT is crucial. If
the disorder is sufficiently strong, the nature of the electronic
soft modes changes from ballistic to diffusive. This slowing-

down of the itinerant electrons promotes ferromagnetism. Ac-
cording to BKV theory, this results in the suppression of the
tricritical point to zero temperature and the resulting QPT is
second-order [14–16], with critical exponents that suggest the
transition is even more continuous than in Hertz-Millis theory
[4, 17]. Although most disordered ferromagnetic metals ex-
hibit second-order QPTs, the critical exponents predicted by
BKV theory (reviewed below) have never been observed con-
sistently.

In this Letter, we demonstrate that the critical behavior ob-
served at a ferromagnetic QPT in UCoGe that is accessed via
chemical substitution of Co with Fe is in excellent agreement
with BKV theory. UCoGe orders ferromagnetically below a
Curie temperature TC = 3 K and coexists with unconven-
tional superconductivity below TS = 0.8 K [18]. Supercon-
ductivity in UCo1−xFexGe is only observed for Fe concen-
trations x ≤ 0.025 [19]. In contrast, TC first increases to the
maximum TC ≈ 9 K at x = 0.075 − 0.1, and then smoothly
decreases to zero temperature at xcr = 0.23 consistent with a
second-order QPT at xcr [19]. The observed increased values
of the residual resistivity (ρ0(xcr) ≈ 420 µΩcm)[19] suggest
a significant amount of disorder making UCo1−xFexGe an
ideal candidate to look for the critical exponents predicted by
BKV theory for disordered metals. In our previous study, the
magnetization near the QPT was found to scale asM (T = 2 K
, H) ∝ H1/δ as function of H . Here the corresponding criti-
cal exponent was determined to be δ ≈ 3/2 in agreement with
BKV theory for a disordered QPT. Because strictly speaking
the exponent δ takes on the value associated with the QPT
only for T = 0, this has motivated our present study of M (T ,
H) down to much lower temperatures. Our results show that
near the disordered ferromagnetic QPT in UCo1−xFexGe, all
critical exponents may be accurately determined from M and
agree quantitatively with BKV theory.

Samples of UCo1−xFexGe were synthesized using a cus-
tom built single-arc furnace using a water-cooled copper
hearth in argon atmosphere with a zirconium getter. The start-
ing materials of U (99.9%), Co pieces (99.99%), Fe pieces,
and Ge pieces (99.9999+%), were weighed stoichiometri-
cally, arc melted, flipped over and remelted five times to en-
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sure chemical homogeneity. Chemical analysis of all samples
was carried out using a commercial scanning electron micro-
scope (FEI Inspect F) equipped with a energy dispersive spec-
troscopy (EDS) microprobe. The EDS analysis (see supple-
mental material) shows that they are indeed chemically ho-
mogeneous, where in particular the nominal Fe concentration
x agrees with the Fe concentration xmeas within the error bar.
Therefore, we use the nominal Fe concentration x through-
out the text. We note that polycrystalline samples were cho-
sen purposefully to obtain the most reliable data. Specifically,
the magnetic properties of UCo1−xFexGe near the QPT are
extremely sensitive to the Fe concentration as shown below.
Single crystals of UCo1−xFexGe are grown via the Czochral-
ski method, which typically leads to concentration gradients
that would be detrimental for the determination of critical ex-
ponents. Finally, it has been demonstrated that the use of poly-
crystalline samples does not affect the ability to reliably deter-
mine scaling exponents of phase transitions [20, 21].

All magnetization M (T , H) data presented here were ob-
tained in a Quantum Design magnetic property measurement
system (MPMS) with a 3He insert, reaching temperatures
T from 300 K down to 460 mK in fields up to 7 Tesla.
Fig. 1 shows isotherms of the magnetization for various T and
x = 0.22 (a), 0.23 (b) and 0.24 (c). The data are displayed in
a log-log plot so that the slope of each curve corresponds to
1/δ. We note that for the determination of 1/δ, the data for
H 5 0.1 T, where scaling is not expected because of domain
effects, were omitted [21]. The resulting temperature depen-
dence of 1/δ for each of the three concentrations is shown in
Fig. 1 (d)-(f). Inspecting Fig. 1(f) for x = 0.24, it is clear that
1/δ saturates at 2/3 for T −→ 0, in excellent agreement with
theory. For x = 0.22 and 0.23 no saturation is observed and
the value of 1/δ for T −→ 0 is more challenging to estimate.

Before continuing the discussion of our results, it is useful
to recall the critical exponents that can be determined from
magnetization data and their values as calculated via BKV
theory for a three-dimensional, ferromagnetic QPT in a metal
with significant disorder [4, 17]. They are summarized in ta-
ble I. Two regimes have to be considered: (a) the so-called
asymptotic regime that should only exist in a narrow region
near the QPT, and (b) the pre-asymptotic region that describes
the critical exponents further away from the QPT [22]. For δ
the asymptotic and pre-asymptotic values are 3/2 and 11/6,
respectively. This suggest that the x = 0.24 is directly in
the vicinity of the QPT and thus shows asymptotic behav-
ior. In contrast, for x = 0.22 and 0.23 pre-asymptotic scal-
ing is expected, and indeed provides an excellent description
of our data as shown in detail below. The absence of low-
temperature saturation of 1/δ for x = 0.22 and 0.23 is ex-
plained by the fact that critical scaling is typically only ob-
served to higher temperatures close to the QPT [1]. There-
fore, measurements to lower temperatures than accessible in
our experiments are required to determine δ unambiguously.
Nevertheless, inspection of the partial derivative ∂(1/δ)/∂T
(Fig. 1 (d)-(f)) demonstrates that the slope of 1/δ is finite for
T −→ 0 (cf. for x = 0.24, ∂(1/δ)/∂T −→ 0), suggesting
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FIG. 1. (Color online) Isotherms of the magnetization M (T , H) of
UCo1−xFexGe as function of magnetic fieldH for Fe concentrations
x = 0.22 (a), 0.23 (b) and 0.24 (c) displayed in a log-log plot. Be-
cause M (T , H) ∝ H1/δ the slope of each curves describes 1/δ. In
panels (d)-(f), the temperature-dependence of 1/δ is shown for each
concentration. Because for H 5 0.1 T scaling is not expected due
to domain effects, the corresponding data were omitted for determi-
nation of 1/δ [21]. The blue dashed lines in (d)-(e) are guides to the
eye. The horizontal dashed black line denotes δ = 3/2. The red
solid curves is the partial derivative ∂(1/δ)/∂T with respect to T .

TABLE I. The critical exponents for a ferromagnetic second-order
quantum phase transition for a ”dirty” itinerant ferromagnet in three
dimensions according to the theory by Belitz, Kirkpatrick and Votja
(BKV) [4, 17] are provided for both the (a) asymptotic and (b) pre-
asymptotic regimes. The (c) column denotes the corresponding val-
ues for an unstable Hertz type fixed point in three dimensions in the
dirty limit.
Critical exponent (a) Asymptotic (b) Pre-asymptotic (c) Hertz (dirty)

δ 3/2 11/6 3
βT 1 3/4 5/8
γT 1/2 5/8 5/4
ν 1 3/5 1/2
zm 2 8/3 8/5

that 1/δ < 2/3 in the pre-asymptotic regime in agreement
with BKV theory.

Because the exponent δ takes on the value associated with
the quantum critical point only for T = 0, it is crucial to in-
spect the critical behavior as a function of temperature. Here
the critical exponents, βT and γT , describe the temperature-
scaling of M (T , H), where isotherms converge onto a sin-
gle curve when displayed as M (T , H)/T βT vs. H/T γT+βT .
Moreover, βT and γT are related to δ via the so-called Widom
relationship γT = βT (δ − 1) [17].

To confirm our findings for δ we plot the measured
isotherms of the magnetization from Figs. 1(a)-(c) via the
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FIG. 2. (Color online) Scaling of the magnetization M of
UCo1−xFexGe as function of magnetic field H and temperature T .
(a)-(c) M/T βT vs. H/T γT+βT for the Fe concentrations x = 0.22,
0.23 and 0.24, respectively. The respective critical exponents βT ,
γT , and δ are denoted in each plot (see main text). (d)-(f) The corre-
sponding adjusted R2 value that describes the goodness of fit for the
scaling of M in (a)-(c) (R2 = 1 is the best agreement between data
and fit) for a wide range of combinations of the critical exponents
(βT , γT ) for each x. The details of how to calculate the adjusted R2

value are provided in the supplemental material. The black and white
dashed lines denote the Widom relationship γT = βT (δ − 1) that
relates the critical exponents βT and γT with the exponent δ deter-
mined from Fig. 1. Here the black and white line use the asymptotic
and pre-asymptotic values of δ respectively (see text and table I). The
blue dashed lines denote the values of (βT , γT ) used for the modified
scaling plots of M in (a)-(c).

scaling relation M (T , H)/T βT vs. H/T γT+βT using the
values for βT and γT predicted by BKV theory for a metal
with significant disorder (cf. table I). Here, according to our
analysis for δ, we have used the pre-asymptotic values for βT
and γT for x = 0.22 and 0.23, and the asymptotic values for
x = 0.24. As shown in Fig. 2, the scaling works remarkably
well for all three concentrations, especially at low tempera-
tures, thus supporting our results for δ, and highlighting the
excellent agreement with BKV theory.

We note, however, that detailed analysis of the scaling of
M (T , H) reveals that the theoretical BKV values of βT and
γT are not the only combination that produces good scaling.
This is illustrated in Fig. 2(d)-(f), where we plot the adjusted
R2 value that describes the goodness of fit (R2 = 1 is the
best agreement) for a wide range of combinations (βT , γT )
(see supplementary materials for details). From the small dif-
ferences in R2 for the various combinations (βT , γT ), it is
clear that the magnetization data are not sensitive enough to
pick a single set of values. This is also confirmed by vi-
sual inspection of the scaling plots of M , where the scaling
looks identical for all combinations (βT , γT ) that correspond
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FIG. 3. (Color online) The Curie temperature TC of UCo1−xFexGe
as a function of (x − xcr). Here x is the Fe concentration and xcr
denotes the concentration at which TC is suppressed to zero temper-
ature. The black line is a fit to TC = (x−xcr)zmν with zmν = 4/5
for xcr = 0.24. The red circles, blue diamonds, and green trian-
gles denote TC determined from magnetization M(T ), specific heat
C(T ), and electrical resistivity ρ(T ) from Ref. [19].

to the red areas in Fig. 2(d)-(f) (see supplement). However,
a consistent set of values is obtained when the Widom re-
lationship that also takes into account δ is considered. For
reference, we plot the Widom relationship for each concentra-
tion in Fig. 2(d)-(f), where the dashed black and white lines
use the asymptotic and pre-asymptotic value of δ determined
from BKV theory (cf. table I). From inspection of Fig. 2(d)
and (e), it is clear that combinations (βT , γT ) that lead to the
best scaling for x = 0.22 and 0.23 generally agree better with
the pre-asymptotic value of δ (i.e., the white dashed line runs
through the red area with R2 ≈ 1). In contrast, for x = 0.24
the asymptotic value of δ gives better agreement as shown in
Fig. 2(f) (black dashed line runs through the red area with
R2 ≈ 1) in agreement with our results from Fig. 1.

Fig. 2(f) also demonstrates that the asymptotic values
(βT = 1, γT = 1/2) (cf. blue dashed lines) lie well in the
center of combinations (βT , γT ) that lead to the excellent scal-
ing of M (T , H). This further highlights how well the data
for x = 0.24 agrees with the asymptotic scaling predicted by
BKV theory, and suggest that x = 0.24 is the critical Fe con-
centration, or is at least very near to it. Similarly, as shown in
Fig. 2(d) and (e) for x = 0.22 and 0.23, the pre-asymptotic
values (βT = 3/4, γT = 5/8) (cf. blue dashed lines) belong
to the combinations of (βT , γT ) that converge all isotherms of
M onto a single curve.

The product of two additional critical exponents, ν and zm,
can be determined fromM . Here zm is the relevant dynamical
exponent [17]. Together they describe how TC is suppressed
as function of tuning parameter x via TC = (x−xcr)zmν . The
theoretical asymptotic and pre-asymptotic values for zmν are
2 and 8/5, respectively (table I). According to BKV theory,
and also in agreement with our data that only shows asymp-
totic scaling for x = 0.24, the asymptotic regime typically
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only exist in a very narrow region around the QPT. Further,
as demonstrated above for x ≤ 0.23, the magnetization ex-
hibits pre-asymptotic scaling, suggesting that TC(x) should
scale with zmν = 8/5. In contrast, we find that TC(x) as de-
termined in Ref. [19] scales well with zmν = 4/5, as we show
in Fig. 3. zmν = 4/5 is consistent with a Hertz type ferromag-
netic QPT in the dirty limit (cf. table I). Despite the fact that a
Hertz’s fixed point is unstable, it is expected from BKV theory
that it will determine the observable behavior over sizable re-
gions of the phase diagram in many disordered materials [17].
Only in close vicinity of the QPT is it expected to observe the
(pre-) asymptotic behavior. However, because the phase tran-
sition rapidly becomes extremely broad for x −→ xcr, the
scaling of TC(x) near xcr cannot be precisely determined.

To summarize, the salient findings of our study are: (i) the
critical exponent δ defined via M (T −→ 0, H) ∝ H1/δ

is equal to 3/2 for the critical Fe concentration xcr = 0.24
and is significantly smaller than 3/2 for x = 0.22 and 0.23
slightly away from the QPT; (ii) our data are in excellent
agreement with the critical exponents βT and γT that de-
scribe the temperature-scaling of M (T , H) being 1 and 1/2
for x = 0.24, and 3/4 and 5/8 for x = 0.22 and 0.23, respec-
tively; (iii) our results are consistent with the QPT being at or
in the very near vicinity of xcr = 0.24; (iv) the asymptotic
and pre-asymptotic regions are situated at Fe concentration
x > 0.23 and x ≤ 0.23, respectively; (v) the TC is found
to scale as TC = (x − xcr)

zmν for a wide range of x with
zmν = 4/5 consistent with a Hertz’s fixed point and in agree-
ment with BKV theory. This establishes that UCo1−xFexGe
is the first metal that exhibits critical behavior near a ferro-
magnetic QPT accessed by chemical substitution that is in
complete agreement with the predictions of BKV theory for
a metal with significant disorder.

For completeness, we note that a critical exponent δ =
3/2 has already been observed in URu2−xRexSi2 [23] and
Sr1−xAxRuO3 [24] at T = 1.8 K and T = 5 K, respec-
tively. However, these results were obtained at finite tem-
perature, whereas the result of BKV theory is only valid for
T −→ 0 and in immediate vicinity of the QPT. Notably, for
URu2−xRexSi2, the QPT is situated at xc = 0.15 − 0.2 but
δ = 3/2 was obtained for x = 0.3 [23, 25]. Finally, all other
exponents βT , γT , and zmν either do not agree with BKV
theory [23, 25] or were not determined.

In conclusion, our results demonstrate that metals with
significant disorder exhibit second-order ferromagnetic QPTs
that are more continuous than in Hertz-Millis theory. This es-
tablishes for the first time that BKV theory not only describes
clean materials extremely well, but is also able to calculate
the critical exponents for disordered metals. Our work also
identifies several reasons why no other disordered materials
have been reported to show BKV critical exponents. Most no-
tably, it is difficult to achieve the right amount of disorder to
observe such behavior; for too small disorder, the tricritical
point remains at non-zero temperatures and no quantum criti-
cal behavior occurs. In contrast, for too strong disorder, quan-
tum Griffiths effects that compete with the critical behavior

are expected [4]. Moreover, there is currently no clear method
of determining disorder quantitatively to allow for comparison
with theory, and choosing a suitable material is challenging.
For example, the often used residual resistivity ratio is only
useful in comparing the disorder for different specimens of
the same material, and is not meaningful for distinct materials.
Further, as shown in detail here, special diligence is required
to obtain meaningful critical exponents, as typical magnetiza-
tion measurements are too insensitive to choose a single set
of critical exponents (see supplemental material). Finally, for
UCo1−xFexGe, we have shown that the asymptotic scaling is
only observed in a tiny region around the QPT [22], which im-
plies that great care is required to identify this region. How-
ever, our study may provide a recipe for identifying further
disordered metals that exhibit BKV critical exponents near a
ferromagnetic QPT.
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[1] H. v. Löhneysen, A. Rosch, M. Vojta and P. Wölfle, Rev. Mod.
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