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The recent experimental realization of synthetic spin-orbit coupling (SOC) opens a new avenue for
exploring novel quantum states with ultracold atoms. However, in experiments for generating two-
dimensional SOC (e.g., Rashba type), a perpendicular Zeeman field, which opens a band gap at the
Dirac point and induces many topological phenomena, is still lacking. Here we theoretically propose
and experimentally realize a simple scheme for generating two-dimension SOC and a perpendicular
Zeeman field simultaneously in ultracold Fermi gases by tuning the polarization of three Raman
lasers that couple three hyperfine ground states of atoms. The resulting band gap opening at the
Dirac point is probed using spin injection radio-frequency spectroscopy. Our observation may pave
the way for exploring topological transport and topological superfluids with exotic Majorana and
Weyl fermion excitations in ultracold atoms.

PACS numbers: 67.85.Ad, 03.75.Ab, 05.30.Fk

Spin-orbit coupling (SOC), the intrinsic interaction be-
tween a particle spin and its motion, plays a key role
in many important phenomena, ranging from anomalous
Hall effects [1] to topological insulators and supercon-
ductors [2–4]. Although SOC is ubiquitous in nature,
the experimental control and observation of SOC induced
effects are quite difficult. In this context, the recent ex-
perimental realization of synthetic SOC for cold atoms
[5–12] provides a completely new and tunable platform
for exploring SOC related physics. Early experiments
only realized the 1D SOC (i.e., an equal sum of Rashba
and Dresselhaus coupling, ∝ kxσy) using two counter-
propagating Raman lasers [5–12]. Many theoretical pro-
posals have explored the generation of 2D SOC (i.e.,
∝ αkxσy + βkyσx) [13–20] as well as their interesting
physical properties in Bose and Fermi gases [21–26]. Re-
cently, 2D SOC was also experimentally realized in ultra-
cold 40K Fermi gases [27] using three Raman lasers and
the associated stable Dirac point on a 2D momentum
plane was observed [27].

The experimental generation of SOC is usually accom-
panied with a Zeeman field, which breaks various sym-
metries of the underlying system and induces interesting
quantum phenomena. The accompanied Zeeman field
can be in-plane (e.g., V σy for SOC ∝ kxσy) or perpen-
dicular (e.g., V σz for SOC ∝ αkxσy + βkyσx). The
in-plane Zeeman field, while preserves the Dirac point,
makes the band dispersion asymmetric, leading to new
quantum states such as Fulde-Ferrell superfluids [28–31].
In contrast, the perpendicular Zeeman field can open a
topological band gap at the Dirac point of the SOC, lead-
ing to many interesting topological transport [1] and su-

perfluid phenomena, such as the long-sought Majorana
[32, 33] and Weyl [24, 34, 35] fermions. In cold atom
experiments, although both in-plane and perpendicular
Zeeman fields have been realized with 1D SOC, only in-
plane Zeeman field was realized with 2D SOC [27]. A
perpendicular Zeeman field with 2D SOC is still lacked
but highly desired in experiments for the observation of
various topological transport and superfluid phenomena.

In this Letter, we theoretically propose and experimen-
tally realize a simple scheme for generating 2D SOC and
a perpendicular Zeeman field simultaneously. The same
setup for generating 2D SOC in previous work [27] is
used, in which three far-detuned Raman lasers couple
three hyperfine ground states. We only change the polar-
ization of the Raman lasers, which can create the perpen-
dicular Zeeman field and open the band gap at the Dirac
point. This scheme significantly simplifies the experimen-
tal requirement compared with existing theoretical pro-
posals [36, 37], which need additional laser beams, com-
plicated optical configuration, and controllable relative
laser phases to create the perpendicular Zeeman field.
We observe and characterize the topological band gap
opening induced by the perpendicular Zeeman field using
spin injection radio-frequency (rf) spectroscopy, which
are in good agreement with our theoretical calculations.

Experimental setup and theoretical modelling: The ex-
perimental setup as well as theoretical modelling for gen-
erating and observing 2D SOC have been described in de-
tails in our previous work [27]. In this section we briefly
describe our experimental system and corresponding the-
oretical modelling with more details provided in the sup-
plementary information [38]. We point out that the lack
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FIG. 1: Scheme of the atom-light interaction configuration for
generating 2D synthetic SOC and an effective perpendicular
Zeeman field simultaneously. (a) Schematic of energy levels of
40K and Raman transitions. Each of the three Raman lasers
dresses one hyperfine ground state. (b) The experimental
geometry and laser configuration. The Raman lasers 1-3 are
initially prepared with the linear polarization along the z, x
and y directions, respectively. Then the Raman lasers 1 and
2 pass through a λ/2 waveplate, which rotates their linear
polarizations by the same angle θ synchronously. Cases I and
II correspond to without and with the λ/4 waveplate after
the λ/2 waveplate for the Raman laser 1.

of complex Raman coupling strength is responsible for
the lack of perpendicular Zeeman field and the resulting
topological band gap opening in our previous work [27].
Specifically we consider ultracold 40K Fermi gases with

three relevant hyperfine states within the 42S1/2 ground
electronic manifold, |1〉 = |F = 9/2,mF = 3/2〉, |2〉 =
|F = 9/2,mF = 1/2〉, and |3〉 = |F = 7/2,mF = 1/2〉,
where (F , mF ) are the quantum numbers for hyperfine
ground states as shown in Fig. 1a. A homogeneous bias
magnetic field B0 = 121.4 G along the z axis (the gravity
direction) produces a Zeeman shift to isolate these three
hyperfine states from others in the Raman transitions, as
shown in Fig. 1a. We can neglect other hyperfine states
and treat this system as one with three ground states.
Three far-detuned Raman lasers propagating on the xy
plane couple these three ground states to the electroni-
cally excited states (Fig. 1b).
For the far-detuned lasers, the excited states can be

adiabatically eliminated, and the Hamiltonian is written
as H = p2z/(2m) +Hxy with [27]

Hxy =

3
∑

j=1

(

(p− kj)
2

2m
+ δj

)

|j〉〈j|−
∑

j′ 6=j

Ωjj′

2
|j〉〈j′| (1)

under the hyperfine ground state basis {|j〉, j = 1, 2, 3}.
Here p = pxex + pyey denotes the momentum of atoms
in the xy plane, δ1 is set as zero (energy reference) for
simplification, δ2 (δ3) corresponds to the two-photon Ra-
man detuning between Raman lasers 1 and 2 (1 and 3).

k1 = krey, k2 = −krey, and k3 = krex are the photon
momenta of three Raman lasers with the single-photon
recoil momentum kr = 2π~/λ. Three Ωjj′ = Ω∗

j′j de-
scribe the Raman coupling strength between hyperfine
ground states |j〉 ↔ |j′〉 through Raman lasers. kr and
recoil energy Er = k2r/2m are taken as natural momen-
tum and energy units.

The origin of 2D SOC in this system can be under-
stood from the eigenstates of the atom-laser interaction
part (the non-diagonal terms Ωjj′ ) of the Hamiltonian
(1), which contain two degenerate dark states and one
bright state separated by an energy gap [38]. Denote
two degenerate dark states as the pseudo-spin states, the
3× 3 Hamiltonian (1) can be projected to the dark state
subspace, leading to an effective spin-half Hamiltonian
with 2D SOC and effective Zeeman fields. In previous
experiments [27] as well as existing theoretical proposals,
Ωjj′ are chosen to be real numbers [39], yielding

Heff = p2/2m+HSOC + VI , (2)

where the 2D SOC HSOC = −αpyσx + (βxpx − βypy)σy

and the in-plane Zeeman field VI = Vxσx+Vyσy in the xy
plane. α, βx, βy, Vx, and Vy are parameters determined
by the experimental parameters kj , δj , and Ωjj′ . Pauli
matrices σi are defined on the dark state pseudo-spin ba-
sis. The in-plane Zeeman field VI shifts the Dirac cone
at p = 0 to another position in the momentum space,
but cannot open a band gap at the Dirac point. Such
controlled shift of the Dirac point has been observed in
our experiment [27]. However, the opening of a topologi-
cal band gap at the Dirac point requires a perpendicular
Zeeman field of the form Vzσz, which demands the gen-
eration of complex Raman coupling Ωjj′ in experiments.

Realization of a perpendicular Zeeman field: Because
the Raman coupling strengths Ωjj′ are proportional

to
−→
E j ×

−→
E j′ , the generation of complex Ωjj′ requires the

tuning of the polarizations of Raman lasers from linear
to elliptical, which can be realized in experiments using
λ/2 and λ/4 waveplates.

The scheme for inserting λ/2 and λ/4 waveplates in
the experimental setup is shown in Fig. 1(b). Here two
λ/2 waveplates rotate the polarizations of Raman lasers 1

and 2 by an angle θ, yielding
−→
E 1 = A1(cos θê‖+sin θê⊥)

(without the λ/4 waveplate) and
−→
E 2 = A2(cos θê⊥ +

sin θê‖), where ê⊥ and ê‖ components correspond to
σ and π polarizations with respect to the quantiza-
tion axis z defined by the magnetic field. The rota-

tion still keeps
−→
E 1 and

−→
E 2 orthogonal. The additional

λ/4 waveplate can change
−→
E 1 to elliptical polarization

−→
E 1 = A1(cos θê‖ + i sin θê⊥), where the imaginary part
is responsible for generating complex Ω12. To illustrate
this, we consider two different cases (I) without and (II)
with the λ/4 waveplate. Hereafter we denote Ωjj′ as the
Raman coupling strength before the λ/2 and λ/4 wave-
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FIG. 2: The energy dispersions of dressed atoms measured
by rf spin-injection spectroscopy. Columns (a1)-(a3) and
(b1)-(b3) correspond to the energy-momentum dispersions
of 2D SOC without (case I) and with (case II) effective per-
pendicular Zeeman field, respectively. The experimental pa-
rameters are Ω12 = −4.97Er, Ω13 = 5.46Er , Ω23 = 6.46Er ,
δ2 = −0.5Er, δ3 = −1.8Er and θ = 45o. (a1) and (b1) are
theoretical results calculated using the Hamiltonian (1) with
the experimental parameters. (a2) and (b2) are experimen-
tal results measured by rf spin-injection spectroscopy. The
black dots represent the experimental data. The yellow cir-
cles in (a1) and (a2) indicate the Dirac points. In both rows,
we only show the lowest two bands for better visualization of
the Dirac points and the band gap opening. (a3) The cross-
section drawings of (a1) and (a2) in the energy-py coordinates
for px = 0.45kr . Triangles are from experimental data. Solid
and dashed lines are from theoretical calculations using the
full (Eq. 1) and effective (Eq. 2) Hamiltonians, respectively.
(b3), The cross-section drawings of (b1) and (b2).

plates. Careful analysis of the Raman transition selection

rules (note that
−→
E 3 = A3ê⊥) shows [38]:

Case I: ΩI
23 = cos θΩ23, Ω

I
13 = cos θΩ13, and ΩI

12 =
Ω12. The rotations induced by the λ/2 waveplates keep
ΩI

jj′ real, therefore only shift the Dirac point position
and cannot open a band gap (see Fig. 2.a1).

Case II: ΩII
13 = cos θΩ13, ΩII

23 = cos θΩ23, and
ΩII

12 = Ω12(cos
2 θ + i sin2 θ), yielding an imaginary part

HZ = −iΩ12 sin2 θ
2

|1〉〈2| + H.c. in the Hamiltonian (1),
which cannot be gauged out by varying the phase of the
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FIG. 3: Measure the Raman coupling strength by Rabi os-
cillations between two hyperfine ground states. Plot of the
Raman coupling strengths Ωi

12 (a) and Ωi
13 (b) versus θ. The

green squares and purple diamonds correspond to cases I and
II respectively. NRC represents normalized Raman coupling.
The solid and dashed lines are theoretical curves.

wavefunction for each hyperfine ground state. This term
opens a band gap at the Dirac point as shown in Fig.
2.b1. In the degenerate dark state pseudo-spin basis,
this term gives Vzσz , the perpendicular Zeeman field.
The energy gap at the Dirac point can be controlled pre-
cisely by adjusting the rotation angle θ. Note HZ has the
same form as that in previous theoretical proposal [37]
that requires complicated setup of additional lasers. Our
scheme is much simpler and more robust because it only
need tune the polarizations of three Raman lasers.

The change of Ωi
jj′ induced by the waveplates can be

measured using the Rabi oscillation between two hyper-
fine ground states [10, 38]. We obtain Ωi

12 for cases I
and II respectively as the function of the rotation angle
θ as shown in Fig. 3a. For case I, ΩI

12 keeps unchanged
for different θ. In case II, we measure the absolute value
of ΩII

12 because ΩII
12 is a complex number, which shows

√

cos4 θ + sin4 θ dependence for different θ (Fig. 3a),
agreeing with the theory. The measurements for Ωi

13 and
Ωi

23 also demonstrate their cos θ dependence (Fig. 3b).

Observation of band gap opening: The imaginary part
iΩ12 sin

2 θ of ΩII
12 opens a band gap at the Dirac point

of the energy-momentum dispersions, corresponding to
a perpendicular Zeeman field. Such topological band
gap opening can be measured by spin injection rf spec-
troscopy, which uses rf field to drive atoms from a free
spin-polarized state into an empty 2D SOC system [27].

In our experiment, a degenerate Fermi gas 40K of
2 × 106 is prepared at the free reservoir hyperfine state
|9/2, 5/2〉 in a crossed optical dipole trap. We ramp the
homogeneous bias magnetic field to the value B0 = 121.4
G, and then apply three Raman lasers with the wave-
length 768.85 nm in 60 ms from zero to its final value.
Subsequently, a Gaussian shape pulse of the rf field is ap-
plied for 450 µs to drive atoms from the initial |9/2, 5/2〉
state to the final empty state with 2D SOC. Since rf
field does not transfer momentum to the atoms, spin in-
jection occurs when the frequency of the rf matches the
energy difference between the initial and final states [38].
At last, the Raman lasers, the optical trap and the bias
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magnetic field are switched off abruptly, and atoms freely
expand for 12 ms with a magnetic field gradient applied
along the x axis. Absorption image is taken along the z

direction. We use a Gaussian fit to locate the maximum
of the measured atomic density as a function of the mo-
mentum and the rf frequency from the absorption image,
from which we can obtain the energy band dispersion.

Fig. 2 shows the momentum-resolved spin-injection
spectra for cases I and II. Other experimental parame-
ters are the same for two cases. When the wavelength
of the Raman lasers is tuned to 768.85 nm between the
D1 and D2 lines, two lower energy dispersions touch at a
Dirac point for case I as shown in Figs. 2(a2)-(a3), which
demonstrate the 2D SOC [27]. With the λ/4 waveplate
(case II), the energy gap at the Dirac point is opened,
as shown in Fig. 2(b2)-(b3). We perform numerical cal-
culations for the energy spectra of the Hamiltonian (1)
and the effective Hamiltonian (2) with corresponding ex-
perimental parameters, which show good agreement with
the experimental data. Note that the eigenenergy of the
effective Hamiltonian (2) deviates from the exact Hamil-
tonian (1) for momentum away from the Dirac points.

In experiments, we determine the band gap and the
position of the Dirac point by searching the minimum of
the energy differences between the lowest two bands in
experiments, as shown in Fig. 4(a,b) for two cases with
θ = π/4. The stars and dots represent the positions of
band gap minima measured in experiments and obtained
in theory using the exact 3 × 3 Hamiltonian (1) [38], re-
spectively. The band gap is very large for a large θ = π/4,
therefore the bands are very flat around the gap minima,
yielding large uncertainty for the measurement of Dirac
point positions in experiments (see the dashed line box
in Fig. 4b).

Fig. 4(c,d) shows the band gap and Dirac point posi-
tions as a function of θ. We see the band gap increases
with the angle θ, while the positions of the Dirac points
only change slightly, demonstrating the tunability of the
topological band gaps through varying the polarization
of the Raman laser. The measured single particle band
gaps and Dirac point position do not exactly agree with
theoretical calculations from the Hamiltonians (1) and
(2), which may be attributed to, for instance, the finite
energy resolution of rf spectrum and the corresponding
finite momentum width, the uncertainty in the Gaussian
fit process to locate the maximum of the measured atomic
density that determines the atom momentum, and the
stability of the magnetic field, etc.

Discussion: The topological properties of the induced
band gap by the perpendicular Zeeman field can be char-
acterized by the Berry curvature of each band [1] (see
supplementary information for the plot of the Berry cur-
vatures in the lowest two bands), which is a delta function
at the Dirac point for case I, but becomes nonzero for all
p with a peak located at the Dirac point for case II. The
corresponding Berry phases are found to be ∓π for the
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FIG. 4: Tunable band gap at the Dirac point induced by the
perpendicular Zeeman field. (a,b) Plot of the energy differ-
ences between the lowest two bands in experiments. The stars
and dots correspond to the Dirac point positions in experi-
ments and theory, respectively. (c, d) The band gap (c) and
the position of the Dirac point (d) are plotted as the func-
tion of θ. In both figures, the squares and diamonds represent
experimental data. The solid and dashed lines represent the-
oretical calculations using the 3× 3 Hamiltonian (1) and the
spin-half effective Hamiltonian (2) respectively. The experi-
mental parameters are the same as Fig. 2.

lowest two bands, as expected.

By varying the Raman laser intensities in experiments,
the positions of the Dirac points, the form of the 2D
SOC, and the associated in-plane Zeeman field can be
tuned. Together with the tunable perpendicular Zee-
man field, our system provides a potential platform for
exploring various SOC related transport phenomena for
non-interacting atoms and superfluid physics for Cooper
pairs. For instance, the coexistence of 2D SOC and per-
pendicular Zeeman field yields non-zero Berry curvature,
leading to an anomalous velocity for atoms [1]. The
resulting anomalous Hall effects may be observed in a
non-interacting Fermi gas [36]. The generated perpen-
dicular Zeeman field is at the order of recoil energy Er,
which is large enough for realizing topological superflu-
ids [32, 33] and associated Majorana and Weyl fermions
[24, 34, 35]. The generated Zeeman field contains both
in-plane and perpendicular components, which make the
single particle band structure highly asymmetric, lead-
ing to the possibility of observing the long-sought Fulde-
Ferrell-Larkin-Ovchinnikov superfluid phases with finite
momentum pairing [28–30]. In particular, in the two-
body physics level, such system could host a dimer bound
state with finite center-of-mass mechanical momentum,
which may be measured in the momentum distribution
[31].

In summary, we have realized a simple scheme for gen-
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erating 2D SOC and a perpendicular Zeeman field simul-
taneously for ultracold fermionic atoms. The topological
energy gap at the Dirac point can be opened and con-
trolled precisely by the perpendicular Zeeman field. Our
study should pave the way for exploring various interest-
ing topological and other exotic superfluid phenomena
arising from the s-wave scattering interaction.
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