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We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-
component spin-imbalanced Fermi gas of 6Li atoms in a 2D optical lattice by varying the lattice
tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using
in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in
1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling
rate t with respect to the pair binding energy εB , we observe a collapse of the data to a universal
crossover point at a scaled tunneling value of t̃c = 0.025(7).
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Atomic Fermi gases prepared in two hyperfine sublevels realize a quasi-spin-1/2 system, for which the two
states may be denoted as |↑〉 and |↓〉. Spin-imbalanced Fermi gases, where the number of spin-up atoms, N↑,
exceeds the number of spin-down atoms, N↓, have been studied extensively in recent years, largely motivated
by a search for exotic superfluid phases [1–3]. One such superfluid, the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase [4, 5], has not been conclusively observed in three dimensions (3D) but is believed to occupy
a large portion of the one-dimensional (1D) phase diagram [6, 7]. Measurements have confirmed that the 1D
phase diagram is consistent with theories exhibiting FFLO [8], but direct evidence for this phase remains
elusive. Since the FFLO phase is expected to be more robust to quantum and thermal fluctuations in higher
dimensions, attention has focused on the dimensional crossover [9–12].

A crossover between 1D and 3D regimes may be realized by simply varying the confinement aspect ra-
tio [13–17]. A complementary dimensional crossover occurs by varying the tunneling between tubes aligned
in an array, as depicted in Fig. 1(a). Such a geometry, which may be achieved using ultracold atoms in
an optical lattice, is more analogous to some material systems, such as carbon nanotube bundles [18] and
spin-1/2 magnet chains [19, 20]. The bundle will cross over from an array of independent 1D tubes for small
tunneling t, to a 3D system as t is increased [21, 22]. We have employed this geometry to determine the
crossover value of t for a spin-imbalanced Fermi gas with various interaction strengths and find a striking
universality in the crossover location.
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FIG. 1. (Color online) (a) Schematic of an array of 1D coupled tubes formed by a 2D optical lattice. The tunneling
rate t between the tubes increases with decreasing optical lattice depth. (b) Schematic of phase separation for a
trapped spin-imbalanced Fermi gas in 1D (top) and in 3D (bottom) at zero temperature. In 1D, the central region
is an FFLO partially-polarized superfluid (SFP), with balanced superfluid (SF0) wings for small polarization P . In
3D, for P < P 3D

c , a central SF0 core is surrounded by an SFP or normal partially-polarized (NPP) phase depending
on interactions, and finally an NFP outer shell. The arrows indicate phase boundaries.

Trapped Fermi gases with spin-imbalance have been observed to phase separate at low temperatures in
both 3D [23–27] and in 1D [8], although in a qualitatively different manner. As shown in Fig. 1(b), phase
separation in 1D results in a partially-polarized superfluid (SFP) central core with wings that are either
a fully-paired superfluid (SF0) or a fully-polarized (NFP) phase, depending on the spin-polarization P in
the tube. Theory indicates the SFP phase is an FFLO superfluid [6, 7]. It was previously shown that the
axial radii of the minority state distribution, R↓, and the spin-difference distribution, Rd, determine the 1D
phase boundaries [8], as indicated in Fig. 1(b). Rd corresponds to the boundary between the SFP core and
the SF0 wings since the spin-difference density is zero in the SF0 wings. Rd goes to zero for P = 0, but
moves to larger axial radius with increasing P until the polarized core encompasses the entire cloud. At this
polarization, the entire tube is in the SFP phase and Rd = R↑ = R↓, where R↑ is the axial radius of the
majority state distribution [6, 8]. At even larger P , the boundary between the SFP core and the NFP wings
is defined by R↓.

Phase separation in a trapped 3D gas at low temperature results in a shell structure, also depicted in
Fig. 1(b). The relative location of the phases in 3D is largely inverted compared to 1D. The center of the
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cloud in 3D is a balanced SF0 phase for P less than a critical polarization P 3D
c , beyond which superfluidity

is suppressed [24–31]. In addition to being spin-balanced, the previous observation of quantized vortices
proved that the core was superfluid [30]. The boundary between the unpolarized SF0 phase and a polarized
SFP, or a partially-polarized NPP normal phase (depending on interactions), is defined by the axial core
radius Rc where the spin-difference density first rises above zero from the center of the cloud [25, 27, 31].
A fully polarized normal shell (NFP) sits outside the partially-polarized region and the boundary between
them is given by R↓. The outer boundary of the cloud, going to vacuum, is defined by R↑ = Rd.

The distinction between phase separation in 1D and 3D can be used to signal the dimensionality of
the system. By varying tube coupling and interactions the location of the dimensional crossover will be
revealed by the central polarization at small P : a partially polarized core is 1D-like, while the presence of
an unpolarized core at small P is 3D-like [32].

As described in detail previously [8, 23], our experiment employs the lowest two hyperfine sublevels of 6Li,
the |F = 1/2, mF = 1/2〉 state, designated as |↑〉, and the |F = 1/2, mF = −1/2〉 state, designated as |↓〉. These
correspond to the majority and the minority states, respectively. The atoms are prepared in a population
imbalanced mixture and evaporatively cooled in an optical trap [8]. A 2D optical lattice is formed by an
orthogonal pair of retro-reflected laser beams at a wavelength λ of 1064 nm. The lattice depth VL may be
controlled up to a maximum value of 12Er using liquid crystal retarders (LCRs) to rotate the polarization
of the retro-reflected beams with respect to the incoming beams. Here, Er = ~2k2/2m is the lattice recoil
energy, k = 2π/λ, and m is the atomic mass. The axial (z) potential is approximately harmonic with a
frequency ωz that varies linearly with VL from (2π)197 Hz for VL = 2.5Er to (2π)256 Hz for VL = 12Er.
We find that the mean number of |↑〉 atoms in the central tube, N↑, is between 160 and 240 for small
(< 5%) polarizations, but it decreases for larger polarizations due to inefficient evaporation. The interaction
strength between the two states is tuned via the wide Feshbach resonance located at B = 832.2 G [33, 34].
We independently control both t and the atomic interactions by varying VL and the magnetic field, B.

The criteria for each tube to be in the 1D regime are that both the Fermi energy EF = kBTF = N↑~ωz

and the temperature T be small compared to the transverse confinement energy: EF , kBT � ~ω⊥, where
ω⊥ is the transverse frequency within a tube. Additionally, when t � T,EF the entire bundle behaves as
an array of individual 1D tubes [8]. The value of EF /~ω⊥ in the central tube of our experiment is between
0.2 and 0.4. We measure T/TF = 0.05 before transferring the atoms into the lattice by fitting the in situ
column density profiles to finite temperature Thomas-Fermi distributions. The entropy in the lattice may
be bounded by this measurement and by measuring the temperature in the trap after ramping the lattice
on and back off with the LCRs. We measure a maximum temperature of T/TF = 0.16 after this round-trip,
which is consistent with our previous 1D experiment [8].

We use in situ phase-contrast-polarization imaging [35] to measure the column density distributions
nc(x, z) for each spin state by two successive probe pulses, each of different near-resonant detuning from the
2P3/2 excited state [8]. The probe pulse duration is ∼5µs and the time between the two pulses is ∼1µs.
The probe beams propagate along the y-axis, perpendicular to the tubes which are aligned along the z-axis.
We use an inverse Abel transform to obtain the full density distribution of the cloud, n(x, y, z), from the
nc(x, z) by making use of the quasi-cylindrical symmetry about the z-axis. The number of atoms per spin
state in the central tube, N↑ and N↓, are extracted from the densities and are used to calculate the central
tube polarization Pt = (N↑ − N↓)/(N↑ + N↓). Figures 2(a) and (b) show axial (z) cuts of in situ column
density images for two different lattice depths for both spin states and for the spin-difference.

The radii R↓ and Rd may be extracted from the n(x, y, z) or obtained directly from the nc(x, z) distri-
butions by assuming the validity of the local density approximation (LDA) in the radial direction. Since
the chemical potential of each spin state is largest for the central tube, the phase boundaries, R↓ and Rd,
are largest for the central tube and decrease radially. We therefore use the central axial cut (x = 0) of the
nc(x, z) to locate R↓ and Rd corresponding to the central tube. These are indicated in Figs. 2(a) and (b).

Figure 2(a) shows a 1D-like profile, where the spin-difference column density profile is approximately
parabolic, in contrast to Fig. 2(b) which is consistent with 3D phase separation. The distinction between
3D and 1D phase separation is confirmed by examination of the local polarization p(0, 0, z) = (n↑(0, 0, z)−
n↓(0, 0, z))/(n↑(0, 0, z) + n↓(0, 0, z)), where n↑ and n↓ are the densities of each state obtained from the
inverse Abel transformed data. The polarization at the center, p0 = p(0, 0, 0), reveals the central phase. In
Fig. 2(c), p0 > 0, corresponding to a partially-polarized central phase consistent with 1D phase separation,
while Fig. 2(d) shows an example with p0 = 0, and is therefore consistent with 3D-like phase separation
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FIG. 2. (Color online) (a, b) Column density profiles nc(0, 0, z) of spin-imbalanced gases. The nc are smoothed in
x and z using a Gaussian function with a width of 5.3µm before taking a cut along the z-axis. Both data sets were
taken at B = 890 G, corresponding to a3D = −8610 a0. The scaled tunneling (defined in text) is t/εB = 0.004 for
the first column and 0.065 for the second. The |↑〉, |↓〉, and the difference distributions are indicated by the black,
blue, and red curves, respectively. The radii are extracted on both sides of the cloud by finding the radius at which a
phenomenological fit to the nc rises by one standard deviation above the mean background level. The radii extracted
from each side are averaged together. (c, d) The corresponding local polarization p(0, 0, z) profiles are found using a
weighted average of the central 18 tubes. p0 is the average of the central 13µm region along z. N↓ is consistent with
the background noise in the gray region and thus, the local polarization is poorly defined there. The entire cloud in
(a) and (c) is SFP, and R↓ ' Rd as a consequence, while in (b, d), there is an extended region of SF0 in the center of
the cloud (p0 = 0), then a partially-polarized region, SFP or NPP. R↓ ≈ Rd in this 3D-like example since Pt is small.

containing a SF0 core.
Two examples of phase diagrams constructed from the radii Rd and R↓ are presented in Figs. 3(a) and (b).

Figure 3(a) corresponds to a relatively deep lattice, with VL = 12Er, that exhibits a 1D-like phase diagram
with a partially-polarized core, similar to those reported in Ref [8]. The distinguishing characteristics of the
1D-like phase diagram are 1) Rd goes to zero as Pt goes to zero, and 2) Rd crosses R↓ at a non-zero Pt.
Figure 3(b) shows an example of a 3D-like phase diagram where the centrally located phase at small Pt is
SF0, and Rd decreases with decreasing Pt until meeting R↓ at small Pt.

We identify phase separation in 3D by the presence of a superfluid core that is suppressed above a critical
polarization P 3D

c [24, 27]. P 3D
c is defined to be the Pt, above which, p0 begins to rise from zero. For P 3D

c = 0,
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FIG. 3. (Color online) (a) 1D- and (b) 3D-like phase diagrams for B = 940 G. R↓ (H) and Rd (•) are scaled by

N1/2lz [6, 8], where lz =
√

~/mωz is the axial harmonic oscillator length and N = N↑ + N↓. The colored regions

correspond to the indicated phases. In (b), the open circle indicates the measured P 3D
c from (d). The dotted line is

an extrapolation from P 3D
c . (c, d) The local central polarization p0 vs. Pt, used to find P 3D

c . The insets show the
central region near P 3D

c . The solid red line is a fit to the data to find P 3D
c , using a function with a bilinear slope [27].

The green vertical arrow indicates P 3D
c . Each data point is the average of ∼10 experimental realizations, binned with

width ∆Pt = 0.005.

there is no balanced core for any Pt, and thus the gas is 1D-like. Figure 3(c) shows p0 corresponding to the
1D phase diagram of Fig. 3(a), where p0 increases linearly with Pt. A crossover to 3D occurs when VL is
decreased so that t becomes sufficiently large to produce a kink in p0 vs. Pt, as seen in Fig. 3(d). The open
circle in Fig. 3(b) indicates the measured P 3D

c from Fig. 3(d).
Figure 4(a) shows P 3D

c vs. t for several interaction strengths. We calculate t from the eigenenergies of
the 1D Hamiltonian [36]. The calculated single particle tunneling rate includes nearest neighbor and next-
nearest neighbor contributions, where the latter becomes significant at lattice depths below 5Er. Comparing
Rd and R↓ as Pt goes to zero is also an indicator of dimensionality. The normalized ratio R̄ = (R↓−Rd)/R↓
goes to 1 in 1D as Rd goes to 0, but in 3D, R̄ goes to 0 as Rd approaches R↓. In Fig. 4(b), we plot R̄ vs.
t for the same interaction strengths. Figures 4(a) and (b) show that the 3D regime is attained for large t,
as expected, but also for larger B, corresponding to weaker attractive interactions and thus larger chemical
potentials. We believe that the interaction dependence arises from the suppression of pair tunneling in the
BEC regime (smaller B) where εB is large, thus making the BEC regime more 1D-like [11].

In Figures 4(c) and (d), we replot the data against the scaled tunneling rate t̃ = t/εB , where εB is the
pair binding energy calculated from [37]:

√
2l⊥
a3D

= −ζ
[

1

2
,
−εB
2~ω⊥

]
, (1)

where ζ is the Hurwitz zeta function. This solution depends on the transverse harmonic oscillator length
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FIG. 4. (Color online) (a) P 3D
c and (b) R̄ vs. t. Ordered from lowest to highest field, the corresponding a3D are:

6170 a0, unitarity, −8610 a0, −5360 a0, and −4340 a0, in units of the Bohr radius a0. The corresponding ranges
of εB , depending on lattice strength, are: 3.8 − 5.2Er, 2.5 − 3.7Er, 1.9 − 2.9Er, 1.6 − 2.5Er, and 1.4 − 2.3Er,
respectively. (c) P 3D

c and (d) R̄ vs. the scaled tunneling rate t̃ = t/εB , showing data collapse. The dotted line in (c)
indicates t̃3D = 0.021(5), the value above which the gas has an SF0 core. The suppression of 1D behavior occurs at
t̃1D = 0.029(5), indicated by the dotted line in (d). The gray band indicates the uncertainty range in locating t̃3D
and t̃1D. These uncertainties result from the indicated vertical error bars (a few representative examples are shown)
which arise from the fits, as well as systematic uncertainty in Pt which is estimated from the standard error of the
mean of 10 images known to be balanced.

l⊥ =
√

~/mω⊥, as well as the 3D s-wave scattering length a3D. When scaled in this way, the data collapse
onto a single curve, thus demonstrating the universality of the crossover [9]. As shown in Fig. 4(c), the
suppression of the SF0 core occurs at t̃3D = 0.021(5). The uncertainty is a combination of the error from
fitting P 3D

c and the systematic uncertainty in measuring Pt. We used only small Pt (< 25%) to determine
P 3D
c in order to justify the assumption of a linear dependence of p0 on Pt. The data for R̄ also collapse to a

single curve when plotted vs. t̃, as shown in Fig. 4(d). We find that R̄ decreases sharply at t̃1D = 0.029(5),
as the gas transitions from 1D to 3D. Although t̃1D and t̃3D may be distinct, the difference between them
is within their mutual uncertainties, so we combine our two measurements of the crossover location to give
t̃c = 0.025(7).

A mean field analysis has predicted that the phase boundary between the SF0 core and the NFP phase
corresponds to a first order transition [9]. Due to noise in the inverse Abel transformed data, however, we
are unable to directly observe a jump in the local polarization. This could also be a consequence of finite
T . Mean-field theory also predicts that the 3D to 1D crossover may be driven by increasing the chemical
potential µ [9]. The slope of this boundary, however, is very steep in the µ vs. h plane, where h is the
chemical potential difference, thus causing the location of this transition to be at very large µ. Since our
measurements are performed in the regime where Pt → 0, or equivalently h → 0, a transition back to 1D
could only occur at such a large µ that the 1D criterion for each tube would not hold. Our experiment
finds the location of the dimensional crossover t̃c at the center of the trap, where the total variation in the
measured densities is no more than a factor of 1.6 for all of the data. t̃c should depend on density, but we
have not measured this dependence.
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In conclusion, our results show that the 1D to 3D crossover occurs at a universal value of the scaled
tunneling, t̃c. Looking towards the future, the crossover region is predicted to be the most robust against
fluctuations in FFLO wavenumber and temperature [9], suggesting the most fruitful parameter region to
search for the FFLO phase is the quasi-1D regime near t̃c.
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