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Experiments and vortex-in-cell simulations are used to study an initially axisymmetric, spatially
distributed vortex subject to an externally imposed strain flow. The experiments use a magnetized
pure electron plasma to model an inviscid two-dimensional fluid. The results are compared to a
theory assuming an elliptical region of constant vorticity. For relatively flat vorticity profiles, the
dynamics and stability threshold are in close quantitative agreement with the theory. Physics beyond
the constant-vorticity model, such as vortex stripping, is investigated by studying the behavior of
non-flat vorticity profiles.

Fluid vortices are common in nature and are important
in such systems as magnetized plasmas [1, 2], geophysical
fluids [3] and fluids of astrophysical interest [4]. While
isolated vortices tend toward axisymmetry [5], they can
be deformed and/or destroyed by external shear or strain
flows. Experiments in viscous fluids such as water and
simulations have shown that a strained vortex may un-
dergo partial or total destruction as the vorticity is pulled
away in thin filaments [6, 7], but a quantitative under-
standing of many aspects of these processes is incomplete.

Presented here is a study of the relatively simple case
of the two-dimensional (2D) dynamics when a pure strain
flow is rapidly applied to an initially axisymmetric, iso-
lated vortex in an inviscid fluid. The strain velocity field
is vs = ǫ (y x̂ + x ŷ), where 2ǫ is the strain rate, and
the vorticity is ω = ∇× v with v the fluid velocity. The
dependence of vortex dynamics on the magnitude of ǫ
and on the initial radial vorticity profile is investigated.
The experiments are done using a magnetized, pure elec-
tron plasma to model an incompressible, inviscid 2D fluid
[8]. An advantage of this system is that electron density,
which is analogous to fluid vorticity, can be measured
directly. Complementary Vortex-In-Cell simulations are
conducted to validate the 2D nature of the experimen-
tal results and to extend the parameter range of these
studies [9].

In the work reported here, the critical normalized
threshold ǫc/ω for vortex destruction is measured, and
vortex dynamics both above and below ǫc is studied. A
central result is that, for constant (flat-top) vorticity pro-
files, the results agree reasonably well with the predic-
tions of a simple, analytic dynamical model due to Kida
[10]; while for extended (non-flat) profiles, stripping at
the periphery of the vortex leads to a loss of circulation
not accounted for in the Kida model.

The observed behavior for an approximately flat profile
is illustrated in Fig. 1. Below ǫc, the vortex distorts
elliptically due to the strain and rotates in the direction
of the circulation as the the ellipticity λ = a/b grows,
where a (b) is the major (minor) axis, while outer layers
are advected away from the vortex by the strain velocity
field. As the vortex continues to rotate, λ decreases back
toward axisymmetry, and then the cycle repeats [cf. Fig.

1 (g)].
In contrast, above ǫc, the rotation stalls and reverses

direction, back toward the strain axis (45◦ in Fig. 1),
and λ grows without bound [cf. Fig. 1 (h)]. In this case,
the fluid stream function eventually changes topology [cf.
Fig. 1, (e) →(f)], leaving no closed streamlines. For non-
flat initial vorticity profiles, destruction is more gradual
in time, with significant stripping of peripheral vorticity
observed before all circulation is lost.
A single-component electron plasma in a strong, uni-

form magnetic field obeys the drift-Poisson equations [8]

(

∂t + v · ∇⊥

)

〈n〉z = 0; ∇2

⊥
φ = −e〈n〉z/ε0, (1)

where the magnetic field is B = B ẑ, 〈n〉z is the z-
averaged electron density, and φ is the 2D electric po-
tential. The 2D velocity field is given by the E ×B drift
v = −∇φ/B × ẑ.
Making the substitutions (e/Bε0)〈n〉z → ω and

φ/B → ψ (in SI units), where ψ is the stream func-
tion, yields the Euler equations that describe 2D incom-
pressible, inviscid fluid flow. Thus electron density is the
analog of fluid vorticity and electric potential is the ana-
log of the fluid stream function. This correspondence has
been used to elucidate many facets of 2D vortex dynam-
ics [9, 11–13].
The electron plasmas are confined in the Penning-

Malmberg trap illustrated in Fig. 2 with B = 4.8 T
[14, 15]. A long cylindrical confinement region (inner ra-
dius rw = 13 mm, length L = 260 mm) is surrounded by
an electrode divided into eight equal 41◦ azimuthal seg-
ments. By applying independent voltages to these seg-
ments, the confined plasma is subjected to an externally
imposed irrotational E × B flow field which advects the
electron density (i.e., vorticity) in the plane perpendicu-
lar to B.
The vorticity field is measured destructively by record-

ing the z-integrated plasma density using a phosphor
screen and CCD camera, with a resolution of 104 pix-
els/m [15]. Shot-to-shot variations are typically < 5 %.
The plasma density is calibrated against the light mea-
sured by the CCD by exciting a small-amplitude ellip-
tical distortion (λ ≈ 1.3) and measuring the rotation
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period τ , where the vorticity is given by ω = 8π/τ
[16]. Typical plasma parameters are electron numbers
N ∼ 0.7− 4× 108, electron densities n ∼ 0.3− 3× 1014

m−3, and plasma temperatures Te ∼ 1 eV.
The validity of the 2D plasma/fluid analogy is ensured

by the separations of temporal and spatial scales. The
frequency ordering is fg, fb ≫ fE ≫ fc, where fg = 130
GHz is the gyrofrequency, fb ≈ 1 MHz is the axial bounce
frequency, fE ≡ 4π/ω ∼ 10−50 kHz is the typical E×B
drift frequency, and fc ≈ 3 kHz is the particle collision
frequency. Spatial scales are ordered as rg ≪ rv, rw ≪ L,
where rg = 0.5 µm is the gyroradius, and rv ≈ 0.1 − 10
mm is the scale of typical vorticity features studied here.
Discrete particle and finite gyroradius effects may be

expected when the vorticity filaments are thinned to sub-
µm width, on longer timescales than those discussed
here. Three-dimensional corrections are estimated to
be < 1%. Dissipation is negligible; the plasma obeys
free-slip boundary conditions, and the effective Reynolds
number Re ∼ 105 as estimated from the decay time of the
peak vorticity which is ∼ 10 s. Under these conditions,
the plasma obeys the drift-Poission Eqs. (1).
The experiments are conducted as follows: An elec-

tron gun (Fig. 2(a) I) is used to fill electrodes III-V with
plasma in a potential well of depth Vc. Then a feedback
circuit connected to two segments of III is used to damp
the m = 1 diocotron mode [15], and the segmented elec-
trode V is used to condition the density profile n(r) us-
ing the rotating-wall technique [17]. The plasma is then
“cut” axially by ramping electrode IV to voltage −Vc.
The m = 1 mode is damped again, and the plasma is
allowed to cyclotron cool to T ∼1 eV [18]. This results
in an axisymmetric vorticity distribution centered on the
trap axis in region III. Experiments are done with a con-
stant strain field imposed in region III during the time
interval t = 0 → tf . At t = tf , electrodes III and IV are
grounded, and the plasma density is imaged using the
CCD diagnostic.
Figure 2 (b) shows the equipotential contours (black

lines, arrows indicate direction), which are streamlines of
the E × B strain flow due to the application of voltages
+Vs, 0,−Vs, 0,+Vs, 0,−Vs, 0 to the segments of electrode
III. The stream function is calculated by solving the Pois-
son equation numerically on the CCD data grid, subject
to the boundary conditions.
The second order term of the cylindrical Laplace solu-

tion dominates the vacuum potential near the trap axis:
φ2 = [(A2Vs)/(2πε0)](r

2/r2w) cos(2θ), where A2 ≈ 0.9 for
the voltage configuration described above. This yields
a flow field vs = ǫ (y x̂ + x ŷ) with strain magnitude
ǫ = VsA2/2πε0Br

2

w = 2220 Vs with Vs in volts and ǫ in
s−1.
However, when the strain magnitude is calibrated in

situ by measuring the plasma displacement from an ap-
plied m = 1 perturbation [19], a slightly larger value of
ǫ = 2390 Vs is obtained. Although the 8% discrepancy
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FIG. 1. Measured vorticity field (colormap, vorticity out of
the page) and stream function (black lines) at t = 0, 40,
and 80 µs: below threshold, ǫ/ω0 = 0.116, (a)-(c), and above
threshold, ǫ/ω0 = 0.13, (d)-(f), where ω0 is the peak vorticity.
The initial vorticity profile is approximately flat. The sepa-
ratrix is shown (thick black line) with saddle (center) points
marked X (O). Panels (g) and (h) show elliptical fits to the
half-maximum vorticity contours at 20 µs intervals starting
at t = 0 for ǫ/ω = 0.116 and 0.13 respectively.

between predicted and measured strain is not presently
understood, the m = 1 calibration is consistent with di-
rect measuremet of strain using passive advection of vor-
ticity where ǫ/ω ≫ ǫc/ω [20]. Thus, the calibrated strain
is used for the data presented here.
The radial vorticity profiles ω(r) studied here are illus-

trated in Fig. 2(c). They can be parameterized approxi-
mately by

ω(r) = ω0 exp[−(r/R)n], (2)

where relatively flat profiles correspond to smoothness
index n = 5− 7 and non-flat ones to n = 2− 3, as shown
by the dashed lines in Fig. 2(c).
The strain field is imposed using a square voltage pulse

with a rise time ∼ 2µs. The applied strain results in an
m = 1 instability that advects the vortex away from the
trap axis [21]. However, careful centering of the plasma
ensures that the m = 1 displacement is sufficiently small
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(a)

FIG. 2. (a) Experimental arrangement with electron source
(I), confinement electrodes (II, IV, and VI), 8-sector electrode
(III), 4-sector electrode (V), phosphor screen (VII), CCD di-
agnostic (VIII); (b) streamlines (black) of external flow cre-
ated by electrode III voltages +Vs (red), -Vs (blue), V = 0
(black); dashed rectangle is the region shown in Fig. 1 (a) - (f);
B out of the page; and (c) the initial experimental vorticity
profiles: green, smoothly decreasing (n = 3), and magenta,
approximately flat top (n = 6, cf. Fig. 1). Dashed lines are
fits to Eq. (2).

(< 0.1 rw) on the short timescales studied here (tf <
300 µs), so that the dynamics are dominated by the φ2
term of the potential.

The drift-Poisson Eqs. (1) are solved numerically us-
ing 2D vortex-in-cell (VIC) fluid simulations with grid
size up to 150 × 150 and particle number up to 4 × 104

using cylindrical free-slip boundary conditions and the
externally applied strain flows used in the experiments
[9]. The m = 1 mode is feedback-stabilized, allowing for
a larger tf than is possible experimentally.

As introduced above, examples of experimental vortex
evolution are shown in Fig. 1, where an external strain
is imposed instantaneously to an initial vorticity profile
(color maps) with ω0 = 220 krad/s and a quasi-flat profile
with n = 6. Slightly below ǫc at ǫ/ω0 = 0.116 [(a) - (c)],
the vortex periphery is stripped, but the core survives.
Slightly above threshold, at ǫ/ω0 = 0.13 [(d) - (f)], the
vortex is destroyed.

The stream function is also shown (black lines), includ-
ing saddle (X) and center (O) points, defined by v = 0.
Initially, the stream function has two saddle points defin-
ing the separatrix (thick black line) and enclosing a single
center point. As the vortex breaks, the saddle points an-
nihilate the center point, leaving a single saddle point
and no closed streamlines. All of the circulation is then
advected out of the system through small azimuthal gaps
between the segments of electrode III.
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FIG. 3. Evolution of (a) total normalized circulation; (b) that
inside the separatrix; and (c) total squared strain at the ori-
gin, normalized to ω0

2 for ǫ/ω0 = 0.087 (black), 0.116 (blue),
0.130 (green), and 0.152 (magenta), where ω0 = 220 krad/s
and n = 6. The ǫ/ω0 = 0.116 and 0.130 data correspond to
Fig. 1. In (c), the red dashed line is the Okubo-Weiss local
stability boundary. Solid lines are guides to the eye.

Figure 3 shows the temporal evolution of quantities
calculated from the experimentally obtained vorticity
and stream function data, for an n = 6 initial profile
and four strain values, two below and two above the
instability threshold. As shown in panel (a), the to-
tal normalized circulation, integrated over the domain,
Γ/Γ0 =

∫

dA ω(t)/
∫

dA ω(t = 0), changes relatively
little over this time interval. Panel (b) shows the circu-
lation contained inside the separatrix and illustrates the
shedding of peripheral vorticity for sub-threshold strain
values and the shrinking and disappearance of the sepa-
ratrix for super-threshold strains.

In panel (c), the ratio of the squared total strain
to vorticity, s2/ω2

0 , is shown as evaluated at the ori-
gin (x, y) = (0, 0), where s2 ≡ 4ψ2

xy + (ψxx − ψyy)
2

and subscripts indicate partial derivatives. At t = 0,
s2 = 4ǫ2 ≪ ω2

0, whereas the total strain at vortex de-
struction is dominated by the self-strain due to vortex
deformation (i.e., s2/ω2

0 ≈ 1 at the breaking point). This
large increase in s illustrates the profound effect of vor-
tex self-organization in the destruction process. The loss
of stability at the vortex center is consistent with the
Okubo-Weiss criterion [22, 23], which predicts a local in-
stability when s2/ω2 > 1.

In Fig. 4, the observed elliptical distortions of the vor-
tex cores are compared to the predictions of the Kida
elliptical patch model, which is described by the dynam-
ical equations [10]
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FIG. 4. Polar plot in (λ - 1, ξ) space: (a) periodic orbit
for ǫ = 0.087, direction of time indicated by the arrow; and
(b) periodic and unstable orbits for ǫ = 0.087 (black), 0.116
(blue), 0.13 (green) and 0.152 (magenta); dashed line at λ −

1 = 4.4 marks the instability threshold. Colored lines are the
predictions of the Kida model with no fitted parameters. The
ǫ/ω0 = 0.116 and 0.130 data correspond to Fig. 1.

λ̇ = 2ǫλ cos(2ξ); ξ̇ = −ǫ
λ2 + 1

λ2 − 1
sin(2ξ) +

ωλ

(λ+ 1)2
, (3)

where ξ is the angle of orientation of the ellipse with
respect to the strain axis.
Ellipses are fit to the measured half-maximum vorticity

contours (i.e. pixels with 0.4 < ω/ω0 < 0.6, the proce-
dure used in Fig. 1 (g) and (h)) to extract experimental
values of λ and ξ. These data are plotted in polar coor-
dinates (λ - 1, ξ) (symbols, with three data points per
time step). Experimental data for ξ were corrected by
∆ξ ≃ − 10◦ to account for rotation during diagnosis.
While accurate for λ ≤ 4, ∆ξ will be smaller as λ in-
creases. Also shown are solutions to Eqs. (3) (lines) [cf.
Ref. [10], Eq. (3.4)]. The periodic orbits for ǫ = 0.087
and 0.116 have measured periods of 68 and 112 ± 5 µs,
respectively, as compared with the Kida predictions of
66 and 112 µs. All predictions are in good agreement
with the experimental results. The dashed line in Fig. 4
marks the critical ellipticity at which the vortex switches
direction (ξ̇ = 0) and begins to rotate clockwise.
Figure 5 (a) shows measurements of ǫc/ω0 as a func-

tion of ω0, for the vorticity profiles shown in Fig. 2
(b). These data (vertical bars to indicate uncertainty)
and the VIC simulations (shaded bars) are compared
with the theoretical prediction of the Kida model (dashed
line, ǫc/ω0 = 0.123), and the equilibrium threshold (dot-
ted line, ǫc/ω0 = 0.15) derived by Moore and Saffman
[24]. For flat profiles, the data (simulation) values of
ǫc/ω0 = 0.124 ± 0.006 (0.124 ± 0.001) are in excellent
agreement with Kida. In the language of bifurcation the-
ory, destruction occurs when the orbit in (λ - 1, ξ) space
intersects an unstable fixed point (i.e., a homoclinic or-
bit). Above this threshold, λ grows without limit. In the
equilibrium case, destruction occurs via a saddle-node
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FIG. 5. (a) Theoretical destruction thresholds for constant
strain (dashed line) and equilibrium (dotted line), compared
with experiment (error bars), with green (magenta) corre-
sponding to n = 2 − 3 (n = 5 − 7) initial vorticity profiles;
and simulation results with shaded bars for n = 3 (green) and
n = 7 (magenta); and (b) normalized circulation remaining
after a strain event of duration tf . Magenta (green) circles
correspond to simulations with n = 7 (n = 3) and tf up to
90/ω0, while magneta (green) triangles are from experiment
with n = 6 (n = 2) and tf = 25/ω0. Solid and dashed lines
in (b) are a guide to the eye, vertical dashed line shows the
theoretical destruction threshold.

bifurcation.

For non-flat profiles, the data (simulations) give a
slightly lower threshold ǫc/ω0 = 0.119 ± 0.006 (0.119 ±
0.001), which appears to be related to enhanced stripping
of the outer parts of the vortex. This is illustrated further
in Fig. 5 (b), which shows the total remaining circulation
after stripping has concluded vs . ǫ/ω0. Non-flat profiles
show significant stripping much farther below threshold.
Similar effects have been observed in simulations of a
vortex in a shear flow [25]. The influence of stripping
on the dynamics and the decrease in ǫc for non-flat pro-
files (e.g., by modifying the self-strain) is currently under
investigation.

A technique is demonstrated here to study driven, in-
viscid vortex dynamics in the laboratory with good con-
trol of the initial vorticity profile, in a situation in which
the vorticity field can be measured directly with good
spatial and temporal resolution. The data show that the
stability and dynamics of an initially axisymmetric vor-
tex with flat core profile, immersed in an externally im-
posed strain flow, can be described reasonably well by the
simple elliptical patch model due to Kida. A further con-
clusion is that non-flat profiles are subject to enhanced
stripping at the periphery of the vortex, leading to a mea-
surable reduction of the stability threshold. These exper-
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imental results are reinforced and supplemented using 2D
vortex-in-cell simulations. A key opportunity for future
research will be study of time-dependent applied strain
flows and the transition to adiabatic behavior [26].
This work is potentially relevant to quasi-two-

dimensional vortex dynamics in a variety of systems,
from oceans and atmospheres of Earth and other plan-
ets [3], to confinement in tokamaks and similar fusion
devices [1, 27]. Directly related to the plasmas studied
here, particle loss can occur in Penning-Malmberg traps
subject to strong transverse electric fields, and this could
impact, for example, efforts to create and confine single-
component antimatter plasmas [15]. Finally, stripping
and filamentation are closely related to the enstrophy
cascade in 2D turbulence; and so the results of exper-
iments, such as those described here, can be expected
to serve as building blocks towards understanding more
complicated turbulent flows [28].
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