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The transverse stability of the target is crucial for obtaining high quality ion beams using the
laser radiation pressure acceleration (RPA) mechanism. In this letter, a theoretical model and
supporting two-dimensional (2D) Particle-in-Cell (PIC) simulations are presented to clarify the
physical mechanism of the transverse instability observed in the RPA process. It is shown that
the density ripples of the target foil are mainly induced by the coupling between the transverse
oscillating electrons and the quasi-static ions, a mechanism similar to the transverse two stream
instability in the inertial confinement fusion (ICF) research. The predictions of the mode structure
and the growth rates from the theory agree well with the results obtained from the PIC simulations in
various regimes, indicating the model contains the essence of the underlying physics of the transverse
break-up of the target.

PACS numbers: 52.38.Kd, 41.75.Jv, 52.35.Qz

Recently, laser radiation pressure ion acceleration
(RPA) has attracted much attention due to its great
potential for building very compact ion accelerators
that can be used in diverse fields such as medical
therapy[1, 2], ion radiography[3], generation of short-
lived isotopes needed in positron emission tomography[4],
injectors for conventional accelerators[5], fast ignition
fusion research[6] and so on. Ideal one dimensional
(1D) simulations show monoenergetic ion acceleration by
the RPA process using a circularly polarized (CP) laser
pulse[7–13] with high energy conversion efficiency. In re-
ality, however, the finite transverse width of the laser
pulse can deform the target shape, leading to electron
heating and energy spectrum broading of the accelerated
ions[10, 11, 14]. At the same time, 2/3D simulations
also show that transverse density ripples can grow sig-
nificantly, leading to some of the laser energy leaking
through and breaking up the target[10, 11, 14–19]. This
phenomenon shows up even for a laser pulse of infinite
width and uniform intensity profile [11, 19, 20]. Various
mechanisms have been proposed to explain the structrue
of these ripples, such as Rayleigh-Taylor like (RT-like)
instability[10, 11, 17, 19–23], Weibel like instability[16,
18] and so on. However, these models have not been able
to give accurate predictions of the mode structure and
its growth rates for a wide range of laser and plasma
parameters.

In this letter, we show through theoretical analysis and
PIC simulations that these surface ripples are more likely
induced by the coupling between the transverse oscillat-
ing electrons and the quasi-static ions within the high
density layer formed by the laser radiation pressure push-
ing the surface plasma forward in a process often called
’hole-boring” (H-B)[7, 24]. As shown in Fig. 1(a), during

this H-B process, soon after the laser impinges on the
front surface of the target, a dynamic equilibrium be-
tween the laser pressure and the electrostatic field within
the plasma is built, forming a quasi-static high density
structure co-moving with the laser pulse[7]. Within this
layer, the CP laser field oscillates at the laser frequency
along both transverse directions albeit π/2 radians out
of phase. A very small transverse ion density fluctuation
can couple with the oscillating laser field to excite an
electron oscillation. This oscillation in turn can couple
with the oscillating laser field to generate a ponderomo-
tive force with spatial variation, driving the electrons to
enhance the ion density fluctuation. The physical pic-
ture of this process is illustrated in Fig. 1(b). It is indeed
very similar to the oscillating two stream instability ex-
tensively studied in the inertial confinement fusion (ICF)
research [25–27]. However, there are significant differ-
ences. First, the oscillating laser field only exists within
the narrow layer formed by the laser pressure, and its
amplitude is determined by the boundary conditions at
the interface. And second, in the case of RPA, the laser is
relativistically intense, with the normalized vector poten-
tial a0 on the order of 1, much larger than those studied
in the previously considered oscillating two stream insta-
bility.

We first derive a 1D theoretical model of this instabil-
ity based on the above physical picture, and then verify
it using 2D PIC simulations. For simplicity, a relativistic
cold two-fluid plasma description is adopted, and only
electrostatic perturbations along the laser electric field
are considered. We note that a full treatment including
both electrostatic (ES) and electromagnetic (EM) modes
has been carried out and will be published in a future
longer paper, which confirms that the ES mode domi-
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FIG. 1. (a) The schematic model of hole boring process by
radiation pressure. (b) The physical picture of transverse in-
stability within the high density layer. The z and y axis rep-
resent the longitudinal and transverse directions, respectively.
The ni1 and Ey1 represent the ion density and the transverse
electric field fluctuations, respectively. fp represents the pon-
deromotive force.

nates the RPA ion acceleration process.

In the co-moving frame of the high density layer, the
cold fluid equations for electrons and protons in the trans-
verse direction are:

∂n(i,e)

∂t
+

∂n(i,e)v(i,e)y

∂y
= 0 (1a)

∂P(i,e)y

∂t
+ v(i,e)y

∂P(i,e)y

∂y
= q(i,e)Ey (1b)

∂Ey

∂y
= 4π(qini − ene) (1c)

where y is the transverse direction; v and P are the ve-
locity and momentum, respectively. For simplicity, we
assume the target is fairly flat and the density fluctua-
tion only depends on (y, t). This assumption is reason-
able as long as the density perturbation is not too large
to significantly distort the foil, which is confirmed in our
PIC simulations. This is in contrast to the RT like insta-
bility models[20, 22, 23], which assume that the surface

is significantly distorted, but still with uniform density.
To linearize the fluid equations, all the quan-

tities can be decomposed as a stationary part
plus a first order quantity and ions are as-
sumed non-relativistic for simplicity, such as
vey = ve0 + ve1, Pey = Pe0 + Pe1, viy = vi0 + vi1(vi0 =
0), ne = n0 + ne1, ni = n0 + ni1, Ey = Ey0 + Ey1, where
Ey0 = E0 cos (ω0t+ φ), and Pe0 = Pos sin (ω0t+ φ). By
using the standard Fourier analysis (assuming all first
order quantities have the form of exp(iky−wt)), one can
get the following equations after eliminating ni1, vi1, Ey1:

−iωne1(ω)−
vosk

2
[ne1(ω + ω0)

−ne1(ω − ω0)] + ikn0κPe1(ω) = 0 (2a)

−iωPe1(ω)−
vosk

2
[Pe1(ω + ω0)

−Pe1(ω − ω0)]− ǫ(ω)ne1(ω) = 0 (2b)

where vos = Pos

γ0

is the electron quiver velocity am-
plitude in the laser electric field, γ0 is the electron’s
zero-order relativistic factor. ω0 and ωpi are the laser
frequency and ion plasma frequency respectively, and

ǫ(ω) = −i 4π
k

ω2

ω2

pi
−ω2 , κ =

2−v2

os

2γ0

.

These two equations show the relationship between ne1

and Pe1 at ω and ω ± ω0. By replacing ω with ω ± ω0,
one can obtain six equations describing the relationship
among ω, ω ± ω0 and ω ± 2ω0. However, to obtain a
close dispersion relation, further assumption is needed.
Since the dynamics involves ion density evolution, which
is typically on a much slower time scale than the laser
oscillation, we may drop all the fast time scale terms at
ω ± 2ω0. Therefore, we now have six equations for six
quantities (ne1, Pe1 at ω and ω ± ω0), and this can be
casted into a matrix form as follows:

















−iω −vosk/2 vosk/2 ikn0κ 0 0
vosk/2 −i(ω + ω0) 0 0 ikn0κ
−vosk/2 0 −i(ω − ω0) 0 0 ikn0κ
ǫ(ω) 0 0 −iω −vosk/2 vosk/2
0 i 4π

k
0 vosk/2 −i(ω + ω0) 0

0 0 i 4π
k

−vosk/2 0 −i(ω − ω0)

































ne1(ω)
ne1(ω + ω0)
ne1(ω − ω0)

Pe1(ω)
Pe1(ω + ω0)
Pe1(ω − ω0)

















= ~0 (3)

The dispersion relation can be obtained by taking the
determinant of the matrix equal to zero. To get the
growth rate, we solve the dispersion equation for each
real k value, and obtain the imaginary part of ω (Im(ω)).
The wave number for the mode with the maximal growth
rate (km) can be calculated numerically by taking the
maximal value of |Im(ω)|.
Fig. 2 shows an example. We take γ0 = 1.5, ωpe =

6 ω0, ωpi = 0.13 ω0, and vos =
√

1− 1/γ2
0 . The relation

between k and Im(ω) is presented in Fig.2 and km = 7.2
ω0/c.

The dispersion relation can be simplified significantly
for a0 < 1 by taking κ ≈ 1 for non-relativistic electrons
and also keeping the dominant terms:

ω4(ξ4 + 12ω4
pe)− ω2ω2

pe(ξ
2 − 2ω2

pe)
2

+ξ2ω2
peω

2
pi(ξ

2 − 2ω2
pe + 2ω2

0) = 0 (4)
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FIG. 2. The relationship between k and Im(ω) for the case of
γ0 = 1.5, ωpe = 6 ω0, ωpi = 0.13 ω0.

where ξ = kvos and ωpe, ωpi are the electron and ion
plasma frequencies of the high density layer at the foil’s
front. km can be directly solved from Eq.4:

kmvos ≈
√
2ωpe (5)

A simple estimation of ωpe can be obtained for a0 < 1
by assuming an uniform density profile and charge neu-
trality (i.e. ne ≈ ni) within the high density layer.
Then the electrostatic field Es can be described as Es =
Es0(ls − z)/ls, (0 ≤ z ≤ ls), where Es0 is the maximum
longitudinal electrostatic field, and ls is the thickness of
this layer. In the hole boring process, after balance is
built, the equilibrium between the electrostatic force and
the radiation pressure within the layer can be written as
1
2Es0elsne =

2I
c
[10], where ne is the averaged ion density

within the layer. In the co-moving frame, ions are mov-
ing into this area with vb and satisfy 1

2miv
2
b = 1

2Es0ls,
where vb is the hole boring velocity. Meanwhile ions
are also moving out of this layer with a velocity of vb.
Therefore, during δt, the momentum conservation rela-
tion leads to minp0vbδt(2vb) =

2I
c
δt[7], where np0 is the

initial plasma density. Combining these three equations,
we get ne = ni = 4np0. This simple relation can be
readily verified by PIC simulations.

On the other hand, by applying the Fresnel-like bound-
ary condition and neglecting the vb × B effect in the y
direction (vb ≪ c), we get vos/c ≈ 2a0

ω0

ωpe
. With the new

form of vos and ωpe, Eq. 5 can be written in a form easier
for direct comparison with PIC simulations:

km ≈ 2
√
2
np0

a0nc

[ω0/c] (6)

where nc =
meω

2

0

4πe2 is the critical density. One can see that
km has a very simple dependence on a0 and np0.

To verify the above theory, we performed a series of
2D PIC simulations using the code OSIRIS[28]. In these
simulations, a CP laser driver with a transverse uniform
profile is used. The laser has a flattop longitudinal profile
and propagates in the z direction. High resolutions are
used in both directions (∆y = ∆z = 0.002 cω−1

0 ), with 16
particles in each cell. The foil is a pure hydrogen plasma

with a step density profile.

Fig. 3 (a) and (b) show an example. We begin with
a0 = 0.2 and np0 = 10nc. In Fig. 3 (a), one can see
density ripples are induced in the high density layer irra-
diated by the laser pulse. A lineout corresponding with
the red dot line of Fig. 3 (a) is presented, showing the
periodic density structures appearing during the interac-
tion process. Fig. 3 (b) is the 2D Fourier Transformation
of Fig. 3 (a) and a lineout showing the distribution of
ky at kz = 0 corresponding with the green dot line is
also presented. It clearly indicates that the instability
mode number km is about 125 ω0/c, which have good
agreements with the estimated value kest (133 ω0/c) from
Eq. 6 and numerical value knum (128 ω0/c) from Eq. 3.
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FIG. 3. (a) In the case of a0 = 0.2, np0 = 10nc, the proton
density with ripples in the front high density layer and its
lineout distribution at z = 10.38 c/ω0 (the red dot line). (b)
the FFT of the proton density and its lineout distribution at
kz = 0 (the green dot line). (c) The relationship between km
and a0 when np0 = 10nc. (d) The relationship between km
and np0 when a0 = 0.2. ksim, kest and knum are obtained from
PIC simulations, from direct numerical solutions of Eq. 3, and
from Eq. 6, respectively.

In Fig.3(c), we plot the relation between km and a0
by fixing the plasma density (np0 = 10nc). Three values
of km (km obtained from PIC simulation, from direct
numerical solution of Eq. 3, and from Eq.6) are used for
comparison. One can see that a very good agreement is
obtained. In Fig.3(d), we also plot the relation between
km and np0 by fixing a0 = 0.2. One can see equally good
agreements between the three values of km.

Eq. 4 can also give a simple expression of the growth
rate γm0 at km.

γm0 ≈ 2 ωpi (7)

We performed a series of 2D simulations with a large
range of plasma parameters similar to Fig. 3 to confirm
our analysis of the growth rates.

Fig. 4(a) shows the relation between γm and a0 at
np0 = 10nc. It is found that though γm is varying with
a0, it is still on the same order of ωpi (in the range of
ωpi ∼ 2ωpi), which has some agreements with Eq. 7. The
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weak relation between γm and a0 mainly comes from the
fact that in the co-moving frame, protons are moving
in and out of the high density layer consecutively, and
this area is not stationary. If the longitudinal flow is
quite slow, the expression of growth rate γm can also be
evaluated. We assume that at t = t0, the ion density
fluctuation is f(t0) = δn0ls, where ls is the length of the
high density layer, and δn0 is the ion density fluctuation
at t = t0. Then at t = t0 + δt, the fluctuation becomes
as f(t0+ δt) = δn0e

γm0δt(ls−vbδt). The growth rate can
be calculated as eγm(t0)δt = f(t0 + δt)/f(t0), where vb is
the hole boring velocity of ions moving in or out of this
region. Based on the analysis above, it is straightforward
to obtain:

γm ≈ 2ωpi − 2ω0iηa0 (8)

where ω0i =
√

me/Miω0 is the critical ion plasma fre-
quency, and η is a coefficient. Eq. 8 shows γm has a
weakly linear dependence on a0, which has quite good
agreement with Fig.4(a) for a0 < 0.7. And η ≈ 4.8 can
be evaluated from simulations. Eq. 8 is valid for the ini-
tial several 1/ωpi, since as the instability grows, more
other effects like electron heating and radiation pressure
transverse nonuniformity will get involved.
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As Fig. 4(b) shows, if we fix a0 = 0.2, the values of
growth rates from simulations also have good agreements
with that from Eq.8.

For a0 > 1, the relativistic factor of electrons need to
be considered. Similar to Eq. 6, a simple expression of
km can also be approximately obtained as:

km ≈
√
2
ωpe

vos

√
κ =

ωpe√
γ0

√

γ2
0 + 1

γ2
0 − 1

(9)

where γ0 is electron’s zero-order quiver energy. Eq. 9 is
valid both for thick foil cases (Hole boring) [7, 24]and thin
foil cases (Light sail)[8–11, 29, 30]. However, the expres-
sions of ωpe and γ0 can not be easily obtained directly.
Instead, we use the estimations from simulations.
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FIG. 5. (a)-(b) for a0 > 1, proton densities of two differ-
ent scenarios (thick foil case (a) and thin foil case (b))are
presented. (c)-(d) laser pulses with transverse Gaussian pro-
file are used to interact with foils to confirm the usability
of the theoretical expressions. ksim, kest and knum are ob-
tained from PIC simulations, from direct numerical solutions
of Eq. 3, and from Eq. 9, respectively. d represents the thick-
ness of the target.

To check the validity of Eq. 9 for a0 > 1, we performed
2D PIC simulations for two different scenarios (thick foil
case and thin foil case) and plot the typical results in
Fig. 5(a) and (b). In Fig. 5(a), a circularly polarized laser
(a0 = 5) is used to interact with a thick target(thickness
d = 6 c/ω0, initial density 30 nc). The mode wave num-
ber in the simulation is 11.2 ω0/c, which is similar to
the estimated value 14.5 ω0/c from Eq. 9 and numerical
value 14.1 ω0/c from Eq.3. In Fig. 5(b), a circularly po-
larized laser (a0 = 2.5) is used to interact with a thin
target(thickness d = 0.4 c/ω0, initial density 10 nc). The
mode wave number in the simulation is 5.6 ω0/c, which
is similar to the estimated value 4.5 ω0/c from Eq. 9 and
numerical value 4.8 ω0/c from Eq.3.

In all the above simulations, uniform laser intensity
profiles are used for the exact comparison with the the-
oretical model. In more realistic cases, the laser typi-
cally has nonuniform intensity profiles like Gaussian( e.g.,
exp(−r2/w2

0)). To confirm the usability of the theoretical
expressions (Eq. 3 and 9), we also performed simulations
and plot the typical results in Fig. 5(c) and (d) .

For a0 < 1, in Fig. 5(c), a CP laser pulse with a0 = 0.8
and a radius w0 = 20 c/ω0 is used to interact with a thin
foil ( thickness 1.3 c/ω0, initial density np0 = 10nc). The
mode wave number in the simulation is 31.4 ω0/c, which
is similar to the estimated value 34.1 ω0/c from Eq. 9
and numerical value 33.2 ω0/c from Eq.3. For a0 > 1, in
Fig. 5(d), a CP laser pulse with a0 = 5 and a radius w0 =
40 c/ω0 is used to interact with a thick foil ( thickness
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6 c/ω0, initial density np0 = 30nc). The mode wave
number in the simulation is 11.8 ω0/c, which is similar to
the estimated value 14.5 ω0/c from Eq. 9 and numerical
value 14.1 ω0/c from Eq.3.

In conclusion, we have demonstrated that the surface
ripples in the RPA process are mainly induced by the cou-
pling between fast oscillating electrons and quasi-static
ions within the high density layer formed by the laser
pressure. A one-dimensional model is presented here to
predict the mode structure and its growth rate, which has
good agreement with 2D PIC simulations at the early ex-
ponential growth stage before the target get destroyed.
In the later stage, significant distortion of the target and
electron heating effects start to play key roles in the fur-
ther (nonlinear) growth of the instability[18, 20, 21, 23].
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