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We discuss generation of subwavelength optical barriers on the scale of tens of nanometers, as
conservative optical potentials for cold atoms. These arise from nonadiabatic corrections to Born-
Oppenheimer potentials from dressed ‘dark states’ in atomic Λ-configurations. We illustrate the
concepts with a double layer potential for atoms obtained from inserting an optical subwavelength
barrier into a well generated by an off-resonant optical lattice, and discuss bound states of pairs of
atoms interacting via magnetic dipolar interactions. The subwavelength optical barriers represent
an optical ‘Kronig-Penney’ potential. We present a detailed study of the bandstructure in optical
‘Kronig-Penney’ potentials, including decoherence from spontaneous emission and atom loss to open
‘bright’ channels.

PACS numbers: 37.10.Jk,32.80.Qk,37.10.Vz

Optical potentials generated by laser light are a funda-
mental tool to manipulate the motion of cold atoms with
both conservative and dissipative forces [1, 2]. Paradig-
matic examples of conservative optical potentials are op-
tical dipole traps from a focused far off-resonant light
beam, or optical lattices (OL) generated by an off-
resonant standing laser wave, as basis of the ongoing
experimental effort to realize atomic Hubbard models
[3]. The underlying physical mechanism is the second-
order AC Stark shift of an electronic atomic level, which
is proportional to the light intensity. Optical poten-
tial landscapes, which can be designed, will thus reflect,
and be limited by the achievable spatial variation of the
light intensity. For light in the far-field, i.e. for opti-
cal trapping far away from surfaces (compare [4–8]), this
spatial resolution will thus be given essentially by the
wavelength of the light λ. In the quest to realize free-
space optical subwavelength structures for atoms [9–15]
we will describe and study below a family of conserva-
tive optical potentials, which arise as nonadiabatic cor-
rections to dark states (DSs) in atomic Λ-type configu-
rations [16, 17], building on the strong nonlinear atomic
response to the driving lasers. The present scheme should
allow the realization of optical barriers for atoms on the
scale of tens of nanometers, and in combination with tra-
ditional optical potentials and lattices the formation of
a complex ‘nanoscale’ optical landscape for atoms. Our
discussion should be of particular interest for realizing
many-atom quantum dynamics as a strongly interacting
many-body systems, where atomic energy scales and in-
teractions, such as magnetic dipolar couplings [18–22],
are strongly enhanced by subwavelength distances.

To illustrate the ‘nanoscale’ optical potentials we can
construct, we show in Fig. 1 a setup, where a subwave-
length barrier of width ` is inserted into a potential well.
This potential well can be created, for example, with
a (standard) off-resonant OL VL(x) = V0 sin2(kLx) ≈
V0(kLx)2 with λL ≡ 2π/kL the wavelength of the trap-

FIG. 1. (Color online) (a) A double well potential for atoms is
created by inserting an optical subwavelength barrier Vna(x)
with width ` into a potential well generated with an off-
resonant OL VL(x) with lattice period λL/2, and size of the
vibrational ground state aL, such that ` � aL � λL/2.
The subwavelength barrier is obtained with an atomic Λ-
system supporting a ‘dark state’ as superposition of the two
atomic ground states |g1〉 and |g2〉 (b), where a resonant Ra-
man coupling from a strong control field Ωc(x) = Ωc sin(kx)
(k = 2π/λ) and a weak probe field Ωp connects the two ground
states (see text).

ping laser, and we denote its ground state size by aL.
Thus our aim is to create a double well potential for
atoms on the subwavelength scale ` � aL � λL/2.
By adjusting the height, and by displacing the subwave-
length barrier we can control the tunnel coupling between
the wells, strongly enhanced relative to the standard OL
with lattice period λL/2. In a 3D (2D) setup this real-
izes a double layer (wire), with subwavelength separation.
Loading magnetic atoms or polar molecules with dipo-
lar interactions into these structures we benefit from the
strongly enhanced energy scales for interlayer(wire) in-
teractions.

We propose and analyze below the physical realization
of such a setup, and we will mainly focus on a 1D model
considering atomic motion along x. The subwavelength
barrier is obtained by choosing an atomic Λ-transition
with two long-lived ground (spin) states |g1〉 ≡ |↓〉, |g2〉 ≡
|↑〉 (Fig. 1b) [23, 24], which are coupled by a Raman tran-
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sition. The first leg of the Raman coupling is a strong
control laser with Rabi frequency Ωc(x) = Ωc sin(kx)
as a standing wave with wavelength λ = 2π/k along
x, and the second is a weak probe laser with Rabi fre-
quency Ωp with propagation direction perpendicular to
the axis x [25]. We denote the ratio of Rabi frequencies
as ε ≡ Ωp/Ωc � 1. The lasers are tuned to satisfy the
Raman resonance condition, while the detuning ∆ from
the excited state |e〉 can be near or off-resonant. The
relevant Hamiltonian is H = −~2∂2

x/2m + Ha(x) [23],
as a sum of the kinetic energy and the internal atomic
Hamiltonian

Ha= ~
[(
−∆−iΓ

2

)
|e〉〈e|+ Ωc(x)

2
|e〉〈g1|+

Ωp
2
|e〉〈g2|+h.c.

]
written in a rotating frame and with Γ the spontaneous
decay rate of |e〉. We can add to the above Hamiltonian a
trapping potential for the ground states V (x) to generate
the well of Fig. 1. This is realized, e.g. as a 1D off-
resonant lattice VL(x) = V0 sin2(kLx) with an effective
kL = 2π/λL, i.e. V (x) ≡ VL(x)

∑
i=1,2 |gi〉 〈gi|. This far

off-resonant OL potential acts equally on both ground
states, and thus preserves the resonance Raman condition
independent of x.

We are interested in the regime of slow atomic motion,
where the kinetic energy (and trapping potential V (x))
are small relative to the energy scales set by Ha. In
the spirit of the Born-Oppenheimer (BO) approximation
[26–29] we diagonalize Ha(x) |Eσ(x)〉 = Eσ(x) |Eσ(x)〉
(σ = 0,±) to obtain position dependent dressed energies,

E0(x) = 0, E±(x) =
~
2

[
−∆̃±

√
Ω2
p + Ω2

c(x) + ∆̃2

]
with ∆̃ ≡ ∆ + iΓ

2 , playing the role of adiabatic BO po-
tentials for the atomic motion. Such a Λ-configuration
supports an atomic DS E0 = 0 as a linear combination of
the ground states, |E0(x)〉 = − cosα(x) |g1〉+sinα(x) |g2〉
with α(x) = arctan[Ωc(x)/Ωp], which for an atom at a
given position x (at rest) is decoupled from the exciting
Raman beams. The identity of this DS changes in space
on a subwavelength scale [10, 24]: in regions |Ωc(x)|�Ωp
we have |E0〉 ∼ |g2〉, while |Ωc(x)| � Ωp defines a region
`≡ ελ/2π � λ with |E0〉 ∼ |g1〉 and thus a spatial sub-
wavelength spin structure (bottom of Fig. 1a).

An atom prepared in the DS, and moving slowly in
space will, in accordance with an adiabaticity require-
ment [30], remain in this DS, and the internal state will
change its internal spin identity according to |E0(x)〉 on
the scale `�λ. Correspondingly, there will be nonadia-
batic corrections to this motion. As shown below, these
nonadiabatic corrections take on the form of a subwave-
length optical barrier representing a conservative poten-
tial

Vna(x) =
~2

2m
(∂xα)

2 ≡ ER
ε2 cos2(kx)

[ε2 + sin2(kx)]2
(1)

with ER = ~2k2/2m the recoil energy and atomic mass
m. The effective 1D Hamiltonian for the atomic motion

FIG. 2. (Color online) a) BO potentials E0(x) = 0 (black line)
and E±(x) (red line, with line width indicating Im E±(x)) for
DS and BS, respectively. Parameters: Ωc = ∆ = 1.7×104ER,
ε = 0.16, Γ = 5 × 102ER. b) Zoom showing Vna(x) (black)
and the lower part of E+(x) (red). c) Lowest Bloch bands εn,q

for Vna(x) for Brillouin zone |q| < π/λ (see text); ε = 0.1. d),
e) Zooms of the lowest Bloch band of the DS lattice, including
couplings to BSs for ε = 0.1,Ωp = 2×103ER, Γ = 103ER (d),
and Γ = 10ER (e) (see text and [32]). Black lines indicate
Re ε1,q, and red shadings the widths Im ε1,q = −~γ1,q/2.

is thus h = −~2∂2
x/2m + VL(x) + Vna(x). In Fig. 1a

this realizes the subwavelength barrier, where the vibra-
tional ground state of the OL potential VL(x) of size aL
is split into a double well for ` � aL. We note that
Vna(x), apart from the overall scale ER, depends only on
ε = Ωp/Ωc. For ε � 1, Vna(x) is a sequence of poten-
tial hills with spacing λ/2, width ` ≡ ελ/2π � λ/2 and
height ER/ε2 � ER (c.f. Fig. 2b), and has for ε � 1
a form reminiscent of a repulsive Kronig-Penney δ-like
comb Vna(x) → ∑

nERλ/(4ε)δ(x − nλ/2) [31]. For Ra-
man beams derived from the same laser source this poten-
tial is insensitive to both intensity and phase fluctuations.
We emphasize that the mechanism behind (1) is related
to nonadiabatic corrections, as described by Olshanii and
Dum [27], and is conceptually different from schemes re-
lying on a substructuring AC Stark based OLs by radio
frequency or laser fields [9, 11], or in combination with
DSs [10]. Fig. 2a is a plot of the BO potentials E0,±(x)
for blue detuning Ω = ∆ > 0 and ε = 0.16 with param-
eters chosen to illustrate the main features (with similar
results for red detuning). For ∆� Ωc,p, the bright state
(BS) |E+(x)〉 → sinα(x) |g1〉 + cosα(x) |g2〉 corresponds
to the standard OL E+(x)→ ~

4 [Ω2
p+Ω2

c(x)]/(∆+ i
2Γ) as

a second order Stark shift (c.f. Fig. 2a).
To quantify the above discussion and assess the valid-

ity of the BO approximation we present now a derivation
and analysis of optical potentials arising from nonadia-
batic corrections to atomic motion, and effects of spon-
taneous emission (due to admixture of bright channels).
Expanding the atomic wavefunction in the BO chan-
nels, |Ψ(x)〉 =

∑
σ Ψσ(x) |Eσ(x)〉, results in the coupled

channel equation for Ψσ(x) [27, 29]. The correspond-
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ing Hamiltonian is H = (−i~∂x − A(x))2/2m + V (x),
where the diagonal matrix Vµσ(x) = Eσ(x)δµσ con-
tains BO potentials (see Fig. 2). Nonadiabatic pro-
cesses, coupling the BO channels, arise from the spa-
tial variation of the internal eigenstates, −i~∂x |Eσ(x)〉 =∑
µ |Eµ(x)〉Aµσ(x) with scaling Aµ,σ ∼ ~/` (see [32]).
We are interested in the regime of approximate adi-

abatic decoupling of BO channels. This requires that
the separations between DS and BS are larger than the
channel couplings. For the DS, the lowest order contri-
bution from the A2-term gives rise to the nonadiabatic
(conservative) potential (1) (see Fig. 2b), with consis-
tency requirement Vna(x) � min|E±(x)|. We discuss
this by setting the external potential V (x) = VL(x) = 0,
and studying the 1D bandstructure for the Λ-scheme of
Fig. 1b. We compare below the results for (i) the single-
channel DS potential Vna(x) with (ii) the exact diagonal-
ization of the (non-Hermitian) Hamiltonian H, using a
Bloch ansatz Ψ(x) = eiqxun,q(x) with quasimomentum q
to obtain the (complex) energies εn,q. In the first case we
have a unit cell λ/2 and thus a Brillouin zone |q| < 2π/λ,
while H has periodicity λ, and thus |q| < π/λ, so that
the bands of the first case appear as ‘folded back’ in the
second case (see Figs. 2c,d,e).

For the DS potential Vna(x) the band structure is for
ε � 1 analogous to that of a Kronig-Penney model [31].
For the lowest Bloch bands n = 1, 2 . . . in the DS channel
0 we obtain (see [32])

ε(0)
n,q≈ERn2

{
1 +

4ε

π2

[
1+(−1)ncos

πq

k

]}
, |q| ≤ 2π

λ
(2)

in very good quantitative agreement with the band
structure obtained from H. These bands have nar-
row width ∼ ε, corresponding to a hopping amplitude
Jn = 2ERεn

2/π2 in the terminology of the tight-binding
Hubbard model [3]. The energy offset of these bands
ERn

2 is close to the levels in the infinitely deep rect-
angular well of the width λ/2, with anharmonic band
spacing (independent of ε, and thus the height of the po-
tential). The Wannier functions associated with these
bands resemble the eigenfunctions of a box potential.
This is in marked contrast to the band structure in a
V (x) = V0 sin2(kx) OL, where energies of low lying bands
are harmonic oscillator-like, and the Wannier functions
are strongly localized aL � λ/2 (Lamb-Dicke regime)
[3]. The spectroscopy of these bands could be investi-
gated with time-of-flight, and by modulating the lattice.
A discussion of this and of loading the lowest Bloch band
can be found in [32].

For the DS channel 0, the nonadiabatic couplings to
the bright (dissipative) BO channels ± result in a small
correction δεn,q to the dispersion, which contains a imag-
inary part Im δεn,q = −~γn,q/2 < 0 signalling decay of
atoms in the Bloch band. Figs. 2d,e indicate the width of
the lowest Bloch band γ1,q, by a red shaded region around
the dispersion relation ε1,q, as obtained from a numerical
solution of the coupled channel equations. The param-
eters are chosen to illustrate the limits of a ‘large’ and

−

Jpair
ER,

FIG. 3. (Color online) a) Position-dependent dipole moment
d(x)/d, for −d1 = d2 = d. Molecules exist as bound states of
two atoms due to dipolar attraction at the interfaces, where
d(x) changes sign. b) Bound state energies Eb, and c) hopping
amplitude Jpair of molecules between the two interfaces for
ε = 0.1 in units of ER,` ≡ ~2/2m`2 = ER/ε

2.

‘small’ decay width Γ (see [32]). We note that in both
cases γ1,q � J1, i.e. dissipative corrections are typically
very small, while γ1,q shows a nontrivial q-dependence.
In Fig. 2d we can parametrize

γ1,q ≈ γ1 sin2(πq/2k), |q| ≤ 2π

λ
(3)

(see [32]), where for the lowest Bloch band the decay in-
creases with q (Fig. 2d) - something we expect from a
STIRAP scenario [17], where faster atomic motion leads
to a stronger violation of adiabaticity and thus depopu-
lation of the DS. In contrast, Fig. 2e shows the appear-
ance of resonances in q: as discussed in [32] these appear
when for a given q = q? the energies in the dark chan-
nel 0 becomes energetically degenerate with energies in
the bright open channel −, ε(0)

n,q? ≈ Re ε(−)
n,q?+k. With in-

creasing Γ relative to the strength of the nonadiabatic
couplings these resonance get successively washed out,
transitioning to the generic behavior of Fig. 2d. We refer
to [32] for a detailed discussion of γn,q, and in particular
scaling with system parameters.

Returning to Fig. 1a we point out that the above dis-
cussion can be generalized to DSs in 2D and 3D con-
figurations. Thus we can replace Ωc(x) → Ωc(x, y) and
VL(x)→ VL(x, y), while preserving the existence of a DS
|E0(x, y)〉, allowing to add a (standard) OL for motion
in the y-direction, or the realization of an atomic double
wire with separation `.

We now turn to a study of quantum many-body
physics, and discuss as an illustrative example motion
of two atoms confined in the subwavelength structure
of Fig. 1, and interacting via magnetic dipolar interac-
tions. The validity of (1) in a many-body Schrödinger
equation will be discussed below. We assume that the
two-body physics can be modeled by the external mo-
tion of each atom governed by VL(x) + Vna(x), while
the internal state is the BO channel |E0(x)〉, with the
unique feature of an x-dependent internal state (see bot-
tom of Fig. 1a). We consider two ground states (spins)
with associated magnetic dipole moments d1, d2, oriented
according to a quantization axis defined by an external
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magnetic field, so that each atom acquires an effective
position-dependent dipole moment, d(x) = d1 cos2 α(x)+
d2 sin2 α(x). Fig. 3a is a plot of this dipole moment for
a choice of states with −d1 = d2 ≡ d, with the spatial
variation of |E0(x)〉 now imprinted as a variation of d(x)
on the scale `. The magnetic (dipolar) interactions be-
tween the atoms is thus modulated by this spatial depen-
dence. There are two generic situations, the first (i) with
the dipole moments oriented along x, and the second (ii)
with dipole oriented perpendicular. In the first case, two
atoms on opposite sides of the barrier in the double layer
attract each other in a head-to-tail configuration. For
the case of electric dipole moments as realized with polar
molecules, stored in a 2D double layer from a OL with
λ/2 separation, the formation of bound states as building
block for quantum phases has been studied [33–36]. Here
we note that this physics of strong interactions becomes
accessible, when the dipolar length, aD = md2/~2 [18, 19]
characterizing the dipolar interactions [37], is compara-
ble to the average distance between the atoms (here ∼ aL
with `� aL � λL).

Instead, we focus here on physics of perpendicular
dipole moments (ii) at the interface between the spin
structure, |g1〉 ↔ |g2〉, as shown in Fig. 3. If the dipoles
are oriented perpendicular to x, atoms on opposite sites
of the interface attract each other, thus allowing for the
formation of a bound state as a ‘domain wall’ molecule.
The situation is illustrated by the following two-particle
Hamiltonian (see [32] for detailed description):

H=
∑
i=1,2

[
−~2∂2

xi

2m
+Vna(xi)

]
+
d(x1)d(x2)

|x1−x2|3
(4)

with d(x) modulated on the scale `, assuming strong con-
finement `⊥ < ` in the transverse plane (and setting
VL = 0). According to Fig. 3 we find that the require-
ment for a bound state of size ` to form is aD/` ∼ 6 [38–
40], where the ‘domain wall’ molecules sit on the slope
of the nonadiabatic potential. These molecules exist at
both the left and right interfaces ±`, and can hop be-
tween them, realizing a double layer with subwavelength
distance. The (potentially large) amplitude Jpair for hop-
ping is reflected as a hybridization of molecular orbitals
on the left and right interfaces, seen in Fig. 3 as a split-
ting between the even and odd states. We can also ob-
tain trimers as bound states of three atoms, where two
spin-up dipoles sit to the left (right) of −` (+`) and a
spin-down in the middle.

From an atomic physics point of view, a Λ-scheme
and a nonadiabatic DS potential can be realized with
both Alkali and Alkaline Earth atoms, where two ground
states are chosen from a Zeeman or hyperfine mani-
fold. Remarkably, these nonadiabatic potentials exist,
on the level of single-atom physics, as conservative opti-
cal potentials even on-resonance (∆ = 0) and for short
lived excited states (but still Ωc,p � Γ). In going off-
resonance the nonadiabatic conservative potential will
persist albeit with an increasing requirement for laser

FIG. 4. a) Atomic zig-zag (double-Λ) configuration with
Ωci(x) strong standing waves and Ωpi weak probe beams,
and b) the corresponding nonadiabatic optical potentials on
the subwavelength scale `� λ for an atomic angular momen-
tum Jg = Je ≡ J transition, where the Zeeman levels are
coupled by circularly polarized laser fields. With increasing
J a double barrier structure develops.

power to satisfy the adiabaticity requirement, in partic-
ular Vna(0) < ~

4 Ω2
p/∆ (Ωp � ∆) for ∆ > 0 as shown

in Figs. 2a,b. With increasing detuning the three-level
model will eventually break down, and the coupling to
several excited states may become important. This situ-
ation parallels the challenges in realizing spin-dependent
OLs [41–44], and spin-orbit coupling in Λ-systems with
Alkali atoms [45–52], where the electronic spin-flip im-
plicit in coupling two ground states via Raman transition
is suppressed for detunings larger than the fine structure
splitting of the excited state. We note, however, the en-
couraging prospects provided by Lanthanides in realizing
spin-orbit couplings [19, 53, 54] and synthetic gauge fields
[55, 56]. In a many-atom context, going to off-resonant
laser excitation is a necessary requirement to suppress
inelastic collision channels (involving laser excitation at
the Condon point), and we expect a similar requirement
here. As discussed in the context of polar molecules, long
range repulsive dipolar interactions in combination with
low-dimensional trapping (1D or 2D) can provide a shield
in atom-atom collisions at low energies [57], thus sup-
pressing inelastic loss and instabilities from short range
physics [58].

To conclude, Λ-type configurations with nonadiabatic
DS optical potentials [59] are readily generalized to zig-
zag configurations as in Fig. 4a (see also [32]). This yields
a double-peaked structure on the scale ` as in Fig. 4b.
These ideas enable writing complex spatial spin patterns
[10] and associated landscapes of nonadiabatic poten-
tials. On the many-atom level spatially varying internal
structures result in position-dependent interparticle in-
teractions. This provides a novel setting for many-body
atomic systems, illustrated here for magnetic dipole-
dipole interactions, and poses interesting questions as
quantum chemistry in atomic collisions at subwavelength
distances.
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Rev. Mod. Phys. 83, 1523 (2011).
[52] N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12,

639 (2016).
[53] X. Cui, B. Lian, T.-L. Ho, B. L. Lev, and H. Zhai, Phys.

Rev. A 88, 011601 (2013).
[54] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider,

J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte,
and L. Fallani, Science 349, 1510 (2015).

[55] S. Nascimbène, J. Phys. B 46, 134005 (2013).
[56] M. L. Wall, A. P. Koller, S. Li, X. Zhang, N. R. Cooper,

J. Ye, and A. M. Rey, Phys. Rev. Lett. 116, 035301
(2016).

[57] This requirement will be easier to satisfy with electric
dipole moments from polar molecules than with magnetic
atoms.

[58] A. Micheli, Z. Idziaszek, G. Pupillo, M. A. Baranov,
P. Zoller, and P. S. Julienne, Phys. Rev. Lett. 105,
073202 (2010).

[59] Note added: After submission of the present work
as arXiv:1607.07338 we have become aware of
arXiv:1609.01285, Subwavelength-width optical tunnel
junctions for ultracold atoms by F. Jendrzejewski et

al., which overlaps with the first part of the present
manuscript.

[60] S. Yi and L. You, Phys. Rev. A 61, 041604 (2000).
[61] S. Ronen, D. C. E. Bortolotti, D. Blume, and J. L. Bohn,

Phys. Rev. A 74, 033611 (2006).
[62] S. Sinha and L. Santos, Phys. Rev. Lett. 99, 140406

(2007).
[63] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke,

and I. Bloch, Phys. Rev. A 72, 053606 (2005).
[64] I. Bloch, Nature Physics 1, 23 (2005).
[65] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and

T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).
[66] C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, and

U. Schollwöck, Phys. Rev. Lett. 97, 050402 (2006).
[67] S. Gupta, Z. Hadzibabic, M. Zwierlein, C. Stan, K. Dieck-

mann, C. Schunck, E. Van Kempen, B. Verhaar, and
W. Ketterle, Science 300, 1723 (2003).

[68] Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle,
Phys. Rev. Lett. 99, 090403 (2007).

[69] P. Törmä and P. Zoller, Phys. Rev. Lett. 85, 487 (2000).
[70] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl,

S. Jochim, J. H. Denschlag, and R. Grimm, Science 305,
1128 (2004).

[71] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin,
Nature 424, 47 (2003).

[72] M. Łącki, A. Elben, H. Pichler, M. Baranov, and
P. Zoller, in preparation.


