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The nature of the interaction between superfluid vortices and the neutron star crust, conjectured
by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a
longstanding question in astrophysics. Using a qualitatively new approach, we follow the dynamics
as superfluid vortices move in response to the presence of “nuclei” (nuclear defects in the crust).
The resulting motion is perpendicular to the force, similar to the motion of a spinning top when
pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force as
a function of the vortex-nucleus separation.

PACS numbers: 26.60.Gj, 03.75.Kk, 67.10.Jn, 67.25.dk

Introduction Pulsar glitches, sudden increases in the
pulsation frequency first observed in 1969 [1, 2], pro-
vide one of the few observable probes into the interior
of neutron stars [3]. Although many models have been
proposed, the origin of large glitches remains a mystery.
The current picture, proposed in 1975 by Anderson and
Itoh [4], is that the quantized vortices in the superfluid
interior of a neutron star store a significant amount of an-
gular momentum. As these vortices “creep” through the
crust, they transfer this angular momentum to the crust.
Glitches result from a catastrophic release of pinned vor-
ticity [5] that suddenly changes the pulsation rate.

This scenario involves two critical ingredients: the trig-
ger mechanism for the catastrophic release (not consid-
ered here) and the vortex-“nucleus” interaction. (By
“nucleus” we mean nuclei-like objects embedded in a
neutron superfluid as is expected in the crust of neu-
tron stars.) The interaction can in principle be derived
from a microscopic theory. However, despite consider-
able theoretical effort, even its sign remains uncertain.
Until now, the force was evaluated by comparing (free)
energies extracted from different static calculations: a
vortex passing through a nucleus, a vortex and nucleus
separated by an infinite distance, or an interstitial vortex
between two neighboring nuclei [6–12]. As pointed out
in Ref. [13], this approach only computes the pinning en-
ergy, and is not able to extract the full information about
the vortex-nucleus interaction.

Despite these efforts, there is still no agreement about
whether pinned or unpinned configurations are preferred.
The problem is that subtracting two large energies aris-
ing from many contributions, typically of order 104 MeV,
results in a tiny difference of order 1 MeV. Symmetry-
unrestricted calculations are challenging, and only by im-
posing axial symmetry has the required 1 MeV accuracy
been achieved [12, 32]. Moreover, the difference is ex-

tremely sensitive to quantum shell effects that are not
present in semiclassical simulations [6–9], and is sensi-
tive to the particle number or background density which
varies from one configuration to the next. (See [12] for
extensive discussion.)

Here we show that nuclei repel superfluid vortices and
characterize the vortex-nucleus interaction within dy-
namical simulations as suggested in [14]. The sign of the
force can be unambiguously determined by looking at the
vortex motion (see the supplemental movie demonstrat-
ing the response of classical gyroscope when pushed [15]).
In 3D dynamical simulations, all relevant degrees of free-
dom of the vortex-nucleus system are active, and the be-
havior provides valuable insight for building effective the-
ories of the vortex-nucleus system. Following [16], an ef-
fective hydrodynamic description can be formulated (see
also [17–20])

T
∂2r

∂z2
+ ρsκ×

(
∂r

∂t
− vs

)
+ fVN = 0, (1)

where r is the position of the vortex core. The first
term is tension force as the vortex is bent, character-
ized by coefficient T . The second term corresponds to
Magnus force where κ = 2π~l̂/2mn is the circulation
which points along the vortex, ρs = mnn is mass density
while n is number density of superfluid neutron back-
ground, mn is neutron mass, and vs is the velocity of
any ambient flow in the background superfluid density.
The last contribution fVN defines the vortex-nucleus in-
teraction in terms of the force per unit length. Clearly
the pinning energy alone does not provide sufficient infor-
mation to describe the motion. In addition, all existing
calculations assume that the vortices form straight lines,
and thus do not reveal information about the tension.
It is demonstrated in [16] that pinning occurs irrespec-
tive of the sign of the vortex-nucleus interaction when
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vs < vc ∼ s1/2Fm/ρsκa, where Fm is set by maximum
magnitude of fVN, s = Fm/T , and a is set by range of
vortex-nucleus interaction. In this work we extract all
effective quantities directly from a microscopic theory.

Method The most accurate and flexible microscopic
approach to superfluid dynamics in nuclear systems is
density functional theory (DFT), which in principle is
an exact approach. Here we use an extension of Kohn-
Sham DFT known as the time-dependent superfluid lo-
cal density approximation (TDSLDA), an orbital-based
fermionic DFT that has been proven to be very accu-
rate for describing the dynamics of strongly correlated
fermionic systems in both ultracold atomic gases [21–27]
and in nuclear systems [28–31]. In this approach, densi-
ties and the superfluid order parameter ∆ are constructed
from quasiparticle orbitals which are represented on a
3D lattice (without any symmetry restrictions) of size
75 fm × 75 fm × 60 fm with lattice spacing correspond-
ing to quite a large momentum cutoff pc ≈ 400 MeV/c,
and a volume that is sufficient to fit a single nucleus and
a quantum vortex with reasonable separation between
the two. To prevent vortices from neighboring cells from
interacting (due to the periodic boundary conditions),
we introduce a flat-bottomed external potential confin-
ing the system in a tube of a radius 30 fm. (See [15] and
[32] for details.) For initial states in our time-dependent
simulations we chose stationary self-consistent solutions
of the TDSLDA with two constraints: i) the center of
mass of the protons is fixed at a specified position, ii)
the phase of the neutron pairing potential increases by
2π when moving around the center of the tube, i.e.
∆(ρ, z, φ) = |∆(ρ, z)| exp(iφ), where ρ =

√
x2 + y2 is the

distance from the center of the tube and φ = tan−1 y
x .

We produce initial states for two background neutron
densities, n = 0.014 fm−3 and n = 0.031 fm−3, with pro-
ton number Z = 50. These represent the zones 3 and 4
expected in neutron star crusts according to the classi-
fication of Negele and Vautherin [33]. Previous calcula-
tions are in clear disagreement in this region of densities.
We start the simulations from two configurations: an un-
pinned configuration where the nucleus is located outside
the vortex, close to the tube boundary, and a pinned con-
figuration where the nucleus is located inside the vortex
(see [15] for figures of these states).

The physics contained in the DFT is defined by the
energy density functional E which is a functional of the
single-particle orbitals. For the normal part we use the
FaNDF0 functional constructed by Fayans et al. [34, 35].
It reproduces the infinite matter equation of state of
Refs. [36, 37], many properties of nuclei [38, 39], and
allows one to construct a very efficient solver of the TD-
SLDA equations (see [15]). The only simplification we
make is to omit the spin-orbit coupling term from the
functional as this greatly reduces the computational cost.
While the spin-orbit term is important for finite nuclei,
in the present context it is not expected to significantly

impact the final results. The spin-orbit term does not
affect uniform matter, thus in our case where the “nu-
clei” are embedded in a uniform gas of neutrons, it would
shift the single-particle levels in the“nucleus” in such a
way as not to influence the physics of the vortex-nucleus
system, as shown in [12]. These hardly influence the
physics of the vortex-nucleus system. Likewise, since
the depletion of the normal density in the vortex core is
small [40], the vortex density is approximately uniform
and one expects the influence of the spin-orbit term on
the structure of the vortex to be small. To the FaNDF0

functional we add a contribution describing the pairing
correlations, Epair(r) = g(n(r))|νn(r)|2 +g(p(r))|νp(r)|2,
where νp,n are the S = 0 proton and neutron anomalous
densities (proportional to the superfluid order parameter
and pairing gaps ∆n,p), g is a density dependent cou-
pling constant, and n/p is density of neutrons/protons.
The coupling constant g is chosen so as to reproduce
the neutron pairing gap in pure neutron matter. It has
the density dependence as predicted by BCS, but with
maximum paring gap of 2 MeV (the full form is shown
in [15]). The local portion of the anomalous densities νn,p
diverges and requires regularization. We use the proce-
dure described in Refs [41, 42], the accuracy of which
has been validated against a wide range of experimental
results for cold atoms [21, 22, 24–27, 43–45] and nuclear
problems [28, 30, 38, 40].

The TDSLDA approach automatically includes various
dissipative processes, including superfluid and normal
phonon excitations, Cooper pair breaking, and Landau
damping. These are crucial for a correct description of
vortex pinning and unpinning [46]. Consider pinning: for
a nucleus to capture a vortex, the vortex must dissipate
its collective energy, otherwise it will simply orbit the nu-
cleus as governed by the Magnus force, like a precessing
spinning top. We demonstrated in [27] that the TDSLDA
accurately models the formation and decay of solitonic
defects – from domain walls into vortex rings and vortex
lines. These effects cannot be reproduced without dissi-
pation, and the agreement with experiments [47, 48] val-
idates that the so-called one-body dissipation naturally
present in the TDSLDA is sufficient to correctly capture
vortex dynamics. With the TDSLDA approach, we can
thus extract both the magnitude of the vortex-nucleus
interaction as well as the dynamical time scales.

To extract the effective force between a quantized vor-
tex and a nucleus, we apply Newton’s laws. Suppose that
only two forces act on the nucleus: the force F arising
from the interaction with the vortex and a known exter-
nal force Fext. In the simplest case, the vortex-nucleus
force depends on the relative distance between interact-
ing objects R. If the nucleus moves with a constant veloc-
ity v0 which is below the critical velocity (so that phonons
are not excited), then the relation F (t) = −Fext(t) holds.
Combining this information with the relative distance
R(t) we can extract the vortex-nucleus force as a function
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FIG. 1. (Color online) Schematic figure explaining the
method used for the force extraction. The force F depends on
relative distance between vortex and nucleus R, moving with
a constant velocity v0. The external force Fext(t) is chosen to
compensate exactly F .

of the separation F (R), see Fig. 1. We choose the exter-
nal force to be constant in space and acting only on the
protons. This force moves the center of mass of the pro-
tons together with those neutrons bound (entrained) in
the nucleus without significantly modifying the internal
structure of the nucleus or surrounding neutron medium.
We adjust the force to ensure that the center of mass of
the protons moves with constant velocity v0:

Fext(t+ ∆t) = Fext(t)− α [v(t)− v0] , (2)

where v(t) is the velocity of the center of mass of protons
and α is the coefficient governing the rate of adjusting the
force. In our simulations we dragged the nucleus with a
very small velocity v0 = 0.001c along the x axis to ensure
that no phonons are excited. The velocity is far below
the critical velocity of the system and is sufficiently small
that the systems follow an almost adiabatic path.

Results of dynamical simulations In the first set of
simulations, we start from an unpinned configuration and
drag the nucleus towards the vortex. Fig. 2 shows the
time evolution of these systems for small vortex-nucleus
separations (see [15] for movies of the entire simulations).
As the nucleus approaches to the vortex, it exerts a force
F (R) on the vortex which responds by moving accord-
ing to the Magnus relationship FM ∝ κ × ∂r

∂t , where r
specifies the vortex-core position. The vortex is initially
moving perpendicular to this force along positive y direc-
tion visually confirming that the force is indeed repulsive
and initially directed along the x axis away from the nu-
cleus. In the case of attraction the vortex would initially
move along the negative y direction. For both densities
considered, the vortex-nucleus interaction is clearly re-
pulsive and increasing with density, a result in agreement
with the hydrodynamic approximation [15]. The curva-
ture of the vortex bending for the closest vortex-nucleus
configuration is set by the nucleus. (There is also a small
displacement of both ends of the vortex during the evo-
lution in our simulation box.) For the higher density, the
vortex induces visible nuclear prolate deformation with
the elongation axis set by the vortex axis. To confirm the
repulsive nature of the force at very small vortex-nucleus

separations, we also start simulations from “pinned” con-
figurations. In both cases the vortex rapidly unpins (with
a timescale shorter than 1, 000 fm/c), i.e., the vortex is
immediately expelled from the nucleus, indicating that
the pinned configuration is dynamically unstable. The
initial energy is transferred into stretching of the vortex
line as it bows out away from the nucleus.

We will proceed now to estimate the vortex tension
T . The vortex is the longest at tmax ≈ 14, 000 fm/c for
both low and high densities, 0.014 fm−3 and 0.031 fm−3

respectively. The length of the vortex increases by
∆L = L(tmax) − L(0) = 3.5 fm and 1.5 fm and the to-
tal excitation energy of the system is E∗ = E(tmax) −
E(0) = 5 MeV and 11 MeV respectively. Assuming all
of this energy is stored in the vortex, we obtain an up-
per bound on the vortex tension of T . 1.4 MeV/fm
and 7.3 MeV/fm, respectively. The energy of a vortex
line in the leading order hydrodynamic approximation is
E ≈ ρsκ2L ln(D/2ξ)/4π [15], where D is the diameter of
the simulation cell, which has to be replaced with the av-
erage vortex separation lv in the neutron star crust [49].
This simple hydrodynamic approximation suggests that
different tensions arise from changes in the neutron su-
perfluid density ρs and vortex core size ξ. Estimating
ρs ∼ n gives a ratio of 0.77 [10], which is much larger
than the ratio 1.4/7.3 ≈ 0.18 obtained from our micro-
scopic simulations. At higher densities the vortex is thus
much stiffer then expected from hydrodynamic estimates.

Force per unit vortex length Combining the informa-
tion about the force F (t) with the vortex-nucleus separa-
tion R(t), we extract the force for various separations R,
defined as the distance within the plane perpendicular to
the symmetry axis of the confining tube. We decompose
the force into a tangential and a centripetal components
with respect to the vortex position at each time. These
results are presented in the inset (b) of Fig. 3. The ex-
tracted force is predominantly central with a negligible
tangential component. The effective range of the force
is about 10 fm for the lower density, increasing to about
15 fm for the higher density, consistent with an increasing
coherence length ξ with density and decreasing neutron
pairing gap. The behavior of the total force for small
separations demonstrates that it is not merely a func-
tion of a distance. At small separations, the deformation
of the vortex line and the nuclear deformation become
important degrees of freedom.

To characterize the effects of the vortex geometry,
we extract the force per unit length f(r). Inspired by
the vortex filament model (see [50, 51] and references
therein), we divide the vortex line into elements of length
dl. Each element exerts force on a nucleus

dF = f(r) sinαr̂dl, (3)

where r denotes the position of the vortex line element
from the center of mass of the protons, α is angle between
vectors dl and r (see inset (a) of Fig. 3), and r̂ = r/r.
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FIG. 2. (Color online) Dynamics of the system for times corresponding to small vortex-nucleus separations for neutron matter
density n = 0.014 fm−3 (top) and 0.031 fm−3 (bottom). Frames from left to right correspond to times (10, 12, 14, 16) ×
1, 000 fm/c (for full movies see [15]). Blue line indicates the vortex core position extracted from the order parameter ∆ (see [15]
for details). Red dot indicates position of the center of mass of protons. The vector attached to the red dot denotes the
vortex-nucleus force F (R). Vectors attached to the vortex indicate contributions to the force −dF extracted from force per
unit length, see Eq. (3) and inset (a) of Fig. 3. They are scaled by factor 3 for better visibility. Projections of the view are
shown on sides of the box. Red dashed lines denote shape of nucleus (defined as a point where density of protons drops to
value 0.005 fm−3). By blue triangles (on XY-plane) trajectory of the vortex up to given time is shown.

The force fVN in Eq. (1) is given by −f(r) sinαr̂. The
total force is the sum of contributions from all vortex el-
ements F =

∫
L

dF . We model f(r) with a Padé approx-
imant with the asymptotic behavior f(r → ∞) ∝ r−3

consistent with hydrodynamic predictions. The parame-
ters of the Padé approximant are determined from a least-
squares fit to all simulation data resulting in the force per
unit length f(r) characterization of the vortex-nucleus in-
teraction shown in Fig. 3. (The hydrodynamic results
and fitting procedure are described in detail in [15].)
This simple characterization of the force F works bet-
ter at lower densities, which is consistent with the larger
nuclear deformations seen at higher densities. Nuclear
deformations introduce an orientation dependence to the
force that is not captured by the simple model (3).

Conclusions We have performed unconstrained simu-
lations of a quantum vortex dynamics in superfluid neu-
tron medium in the presence of a nucleus using an ap-
propriate time-dependent extension of DFT to superfluid
system. We have determined that the vortex-nucleus
force is repulsive and increasing in magnitude with den-
sity for the densities characteristic of the neutron star
crust (0.014 and 0.031 fm−3). The vortex line shape
is strongly affected by the interaction at small separa-
tions, leading to significant bending and its lengthen-
ing, controlled by the size of the nucleus. Moreover, the
vortex-nucleus interaction also induces a deformation of
the nucleus. These results demonstrate that the vortex-
nucleus interaction cannot be described by a function of

their separation alone. To fully characterize the vortex-
nucleus interaction we have extracted the force per unit
length for various vortex-nucleus configurations. For ve-
locities of any ambient flow in the background smaller
than vc ∼ (1−5)×10−4c the pinned superfluid can store
enough angular momentum to drive the giant glitches
seen in pulsars [16].
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(a)

(b)

FIG. 3. (Color online) Extracted force per unit length f(r)
for both densities. Negative values correspond to the repul-
sive force. In inset (a) the schematic configuration is shown
explaining the extraction procedure according to Eq. (3). In-
set (b) shows the measured total force F (R) as shown in Fig. 1
for both densities. The force has been decomposed into tan-
gential and centripetal components with respect to the in-
stantaneous vortex position.
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