Measurement of Singly Cabibbo Suppressed Decays

$\Lambda_c^+ \rightarrow p\pi^+\pi^-$ and $\Lambda_c^+ \rightarrow pK^+K^-$

M. Ablikim et al. (BESIII Collaboration)

Phys. Rev. Lett. 117, 232002 — Published 2 December 2016

DOI: 10.1103/PhysRevLett.117.232002
Measurement of Singly Cabibbo-Suppressed Decays $\Lambda^+ \rightarrow \pi^+\pi^-$ and $\Lambda^+ \rightarrow pK^+K^-$
(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Rafwinder Road, 54000 Lahore, Pakistan
9 G. I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
10 GSI Helmholtz Centre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
11 Guangxi Normal University, Guilin 541004, People’s Republic of China
12 Guangxi University, Nanning 530004, People’s Republic of China
13 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
14 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
15 Henan Normal University, Xinxiang 453007, People’s Republic of China
16 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17 Huangshan College, Huangshan 245000, People’s Republic of China
18 Hunan University, Changsha 410082, People’s Republic of China
19 Indiana University, Bloomington, Indiana 47405, USA
20 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy
21 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
22 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
23 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
24 Justus-Liebig-Universität Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
25 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
26 Lanzhou University, Lanzhou 730000, People’s Republic of China
27 Liaoning University, Shenyang 110036, People’s Republic of China
28 Nanjing Normal University, Nanjing 210023, People’s Republic of China
29 Nanjing University, Nanjing 210093, People’s Republic of China
30 Nankai University, Tianjin 300071, People’s Republic of China
31 Peking University, Beijing 100871, People’s Republic of China
32 Seoul National University, Seoul, 151-747 Korea
33 Shandong University, Jinan 250100, People’s Republic of China
34 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
35 Shanxi University, Taiyuan 030006, People’s Republic of China
36 Sichuan University, Chengdu 610064, People’s Republic of China
37 Soochow University, Suzhou 215006, People’s Republic of China
38 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
39 Tsinghua University, Beijing 100084, People’s Republic of China
40 (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
41 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
42 University of Hawaii, Honolulu, Hawaii 96822, USA
43 University of Minnesota, Minneapolis, Minnesota 55455, USA
44 University of Rochester, Rochester, New York 14627, USA
45 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
46 University of Science and Technology of China, Hefei 230026, People’s Republic of China
47 University of South China, Hengyang 421001, People’s Republic of China
48 University of the Punjab, Lahore-54590, Pakistan
Using 567 pb\(^{-1}\) of data collected with the BESIII detector at a center-of-mass energy of \(\sqrt{s} = 4.599\) GeV, near the \(\Lambda_c^+\Lambda_c^-\) threshold, we study the singly Cabibbo-suppressed decays \(\Lambda_c^+ \to pK^-\pi^+\) and \(\Lambda_c^+ \to pK^-\pi^-\). By normalizing with respect to the Cabibbo-favored decay \(\Lambda_c^+ \to pK^-\pi^+\), we obtain ratios of branching fractions:
\[
\frac{B(\Lambda_c^+ \to p\pi^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} = 1.90 \pm 0.48 \pm 0.25 \%,
\]
\[
\frac{B(\Lambda_c^+ \to p\pi^-\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^-)} = (1.81 \pm 0.33 \pm 0.13)%,
\]
\[
\frac{B(\Lambda_c^+ \to p\pi^-\pi^-)}{B(\Lambda_c^+ \to p\pi^+\pi^-)} = (9.36 \pm 2.22 \pm 0.71) \times 10^{-3},
\]
where the uncertainties are statistical and systematic, respectively. The absolute branching fractions are also presented. Among these measurements, the decay \(\Lambda_c^+ \to p\pi^-\pi^-\) is observed for the first time, and the precision of the branching fraction for \(\Lambda_c^+ \to pK^-\pi^-\) is significantly improved.

PACS numbers: 14.20.Lq, 13.30.Eg, 13.66.Bc, 12.38.Qk
be found in Ref. [18]. Throughout this Letter, charge-conjugate modes are implicitly included, unless otherwise stated.

The GEANT4-based [19] Monte Carlo (MC) simulations of e^+e^- annihilations are used to understand the backgrounds and to estimate detection efficiencies. The generator KKMC [20] is used to simulate the beam–beam energy spread and initial-state radiation (ISR) of the e^+e^- collisions. The inclusive MC sample includes $\Lambda^+_c\Lambda^-_c$ events, charmed meson $D^{(*)}_s$ pair production, ISR events, and continuum processes $e^+e^-\rightarrow q\bar{q}$ ($q=u,d,s$). Decay modes as specified in the PDG [16] are modeled with EVTGEN [21, 22]. Signal MC samples of $e^+e^-\rightarrow \Lambda^+_c\Lambda^-_c$ are produced in which the Λ^+_c decays to the interested final state ($pK^−\pi^+$, $p\pi^+\pi^+$ or $pK^+K^−$) together with the Λ^-_c decaying generically to all possible final states. Charged tracks are reconstructed from hits in the MDC and are required to have polar angles within $|\cos \theta|<0.93$. The points of closest approach of the charged tracks to the interaction point (IP) are required to be within 1 cm in the plane perpendicular to the beam (V_\perp) and ±10 cm along the beam (V_z). Information from the TOF system and dE/dx in the MDC are combined to form PID confidence levels (C.L.) for the π, K and p hypotheses. Each track is assigned to the particle type with the highest PID C.L. To avoid backgrounds from beam interactions with residual gas or detector materials (beam pipe and MDC inner wall), a further requirement $V_z<0.2$ cm is imposed for proton.

Λ^+_c candidates are reconstructed by considering all combinations of charged tracks in the final states of interest $pK^−\pi^+$, $p\pi^+\pi^+$ and $pK^+K^−$. Two variables, the energy difference $\Delta E = E−E_{beam}$ and the beam-constrained mass $M_{BC} = \sqrt{E_{beam}^2/c^2−p^2/c^2}$, are used to identify the Λ^+_c candidates. Here, E_{beam} is the beam energy, and $E(p)$ is the reconstructed energy (momentum) of the Λ^+_c candidate in the e^+e^- c.m. system. Λ^+_c candidate is accepted with $M_{BC} > 2.25 GeV/c^2$ and $|\Delta E| < 20$ MeV (corresponding to 3 time of resolution). For a given signal mode, we accept only one candidate per Λ_c charge per event. If multiple candidates are found, the one with the smallest $|\Delta E|$ is selected. The ΔE sideband region, $40 < |\Delta E| < 60$ MeV, is defined to investigate potential backgrounds.

For the $\Lambda^+_c\rightarrow p\pi^+\pi^−$ decay, we reject K^0_S and Λ candidates by requiring $|M_{p+\pi−}−M_{PDG}^{K^0_S}|>15$ MeV/c2 and $|M_{p+\pi−}−M_{PDG}^{\Lambda}|>6$ MeV/c2, corresponding to 3σ times of the resolution, where $M_{PDG}^{K^0_S}$ and M_{PDG}^{Λ} are the PDG K^0_S (Λ) mass quoted from the PDG [16] and $M_{p+\pi−}$ is the $p\pi^+\pi^−$ invariant mass. These requirements suppress the peaking backgrounds of the CF decays $\Lambda^+_c\rightarrow \Lambda\pi^+$ and $\Lambda^+_c\rightarrow pK^0_S$, which have the same final state as the signal.

With the above selection criteria, the M_{BC} distribution is shown in Fig. 1 for the decays $\Lambda^+_c\rightarrow pK^−\pi^+$ and $\Lambda^+_c\rightarrow p\pi^+\pi^−$ and in Fig. 2 (a) for the decay $\Lambda^+_c\rightarrow pK^+K^−$. Prominent Λ^+_c signals are observed. The inclusive MC samples are used to study potential backgrounds. For the decays $\Lambda^+_c\rightarrow pK^−\pi^+$ and $\Lambda^+_c\rightarrow pK^+K^−$, no peaking background is evidenced in the M_{BC} distributions. While for the decay $\Lambda^+_c\rightarrow p\pi^+\pi^−$, the peaking backgrounds of 28.2±1.6 events from the decays $\Lambda^+_c\rightarrow \Lambda\pi^+$ and $\Lambda^+_c\rightarrow pK^0_S$ are expected, where the uncertainty comes from the measured BFs in Ref. [15]. The cross feed between the decay modes is negligible by the MC studies.

To obtain the signal yields of the decays $\Lambda^+_c\rightarrow pK^−\pi^+$ and $\Lambda^+_c\rightarrow p\pi^+\pi^−$, a maximum likelihood fit is performed to the corresponding M_{BC} distributions. The signal shape is modeled with the MC simulated shape convoluted with a Gaussian function representing the resolution difference and potential mass shift between the data and MC simulation. The combinatorial background is modeled by an ARGUS function [23]. In the decay $\Lambda^+_c\rightarrow p\pi^+\pi^−$, the peaking background is included in the fit, and is modeled with the MC simulated shape convoluted with the same Gaussian function for the signal, while the magnitude is fixed to the MC prediction. The fit curves are shown in Fig. 1. The M_{BC} distribution for events in the ΔE sideband region is also shown in Fig. 1 (b) and a good agreement with the fitted background shape is achieved. The signal yields are summarized in Table I.

For the decay $\Lambda^+_c\rightarrow pK^+K^−$, a prominent ϕ signal is observed in the $M_{K^+K^−}$ distribution, as shown in Fig. 2 (b). To determine the signal yields via ϕ (N^ϕ_{sig}) and non-ϕ ($N^{non-\phi}_{sig}$) processes, and to better model the background, we perform a two-dimensional unbinned extended maximum likelihood fit to the M_{BC} versus $M_{K^+K^−}$ distributions for events in the ΔE signal region and sideband re-
Fig. 2. (color online). Distributions of M_{BC} (left) and $M_{K^+K^-}$ (right) for data in the ΔE signal region (upper) and sideband region (bottom) for the decay $\Lambda_s^+ \rightarrow pK^+K^-$. The blue solid curves are for the total fit results, the red dash-dotted curves show the $\Lambda_s^+ \rightarrow p\phi \rightarrow pK^+K^-$ signal, the green dotted curves show the $\Lambda_s^+ \rightarrow pK^+K_{\text{non-}\phi}$ signal, the blue long-dashed curves are the background with ϕ production, and the magenta dashed curves are the non-ϕ background.

In the M_{BC} distribution, the shapes of Λ_c signal (via ϕ or non-ϕ process) and background, denoted as $S_{M_{BC}}$ and $B_{M_{BC}}$, are modeled similarly to those in the decay $\Lambda_c \rightarrow p\pi^+\pi^-$. In the $M_{K^+K^-}$ distribution, the ϕ shape for the Λ_c process ($\Lambda_c^+ \rightarrow p\phi \rightarrow pK^+K^-$), S_{MKK}^ϕ, is modeled with a relativistic Breit-Wigner function convoluted with a Gaussian function representing the detector resolution, while that for the Λ_c decay without ϕ ($\Lambda_c^+ \rightarrow pK^+K^-$), $S_{MKK}^{\text{non-}\phi}$, is represented by the Λ_c shape with a uniform distribution in K^+K^- phase space. The shape for the non-Λ_c background including ϕ (state, B_{MKK}^ϕ, has the same parameters as S_{MKK}^ϕ, while for that for the background without ϕ, $B_{MKK}^{\text{non-}\phi}$, is described by a 3rd-order polynomial function. Detailed MC studies indicate the non-Λ_c background (both with and without ϕ included) have the same shapes and yields in both ΔE signal and sideband regions, where the yields are denoted as N_{bgk}^ϕ and $N_{bgk}^{\text{non-}\phi}$, respectively. The likelihoods for the events in ΔE signal and sideband regions are given in equation (1) and (2), respectively.

\[
\mathcal{L}_{\text{sig}} = \frac{e^{-(N_{\text{sig}}^\phi + N_{\text{sig}}^{\text{non-}\phi} + N_{\text{bgk}}^\phi + N_{\text{bgk}}^{\text{non-}\phi})}}{N_{\text{sig}}!} \times \prod_{i=1}^{N_{\text{sig}}^\phi} S_{MKK}^\phi(M_{BC}^{i}) \times S_{MKK}^{\text{non-}\phi}(M_{K^+K^-}^{i}) \times B_{MKK}^\phi(M_{BC}^{i}) \times B_{MKK}^{\text{non-}\phi}(M_{K^+K^-}^{i}) + N_{\text{bgk}}^\phi S_{MKK}^\phi(M_{BC}^{i}) \times B_{MKK}^\phi(M_{K^+K^-}^{i}) + N_{\text{bgk}}^{\text{non-}\phi} S_{MKK}^{\text{non-}\phi}(M_{BC}^{i}) \times B_{MKK}^{\text{non-}\phi}(M_{K^+K^-}^{i})]
\]

where the parameter N_{sig} (N_{side}) is the total number of selected candidates in the ΔE signal (sideband) region, and M_{BC} and $M_{K^+K^-}$ are the values of M_{BC} and $M_{K^+K^-}$ for the i-th event. We use the product of PDFs, since the M_{BC} and $M_{K^+K^-}$ are verified to be uncorrelated for each component by MC simulations.

The signal yields are extracted by minimizing the negative log-likelihood $-\ln \mathcal{L} = (-\ln \mathcal{L}_{\text{sig}}) + (-\ln \mathcal{L}_{\text{side}})$. The fit curves are shown in Fig. 2 and the yields are listed in Table I. The significance is estimated by comparing the likelihood values with and without the signal components included, incorporating with the change of the number of free parameters, listed in Table I.

Table I. Summary of signal yields in data (N_{signal}), detection efficiencies (ε), and the significances. The errors are statistical only.

<table>
<thead>
<tr>
<th>Decay modes</th>
<th>N_{signal}</th>
<th>ε (%)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_c^+ \rightarrow pK^+\pi^-$</td>
<td>5940 ± 85</td>
<td>48.0 ± 0.1</td>
<td>-</td>
</tr>
<tr>
<td>$\Lambda_c^+ \rightarrow p\pi^+\pi^-$</td>
<td>495 ± 35</td>
<td>59.7 ± 0.1</td>
<td>16.2σ</td>
</tr>
<tr>
<td>$\Lambda_c^+ \rightarrow pK^+K^- (via \phi)$</td>
<td>44 ± 8</td>
<td>40.2 ± 0.1</td>
<td>9.6σ</td>
</tr>
<tr>
<td>$\Lambda_c^+ \rightarrow pK^+K^- (non-\phi)$</td>
<td>38 ± 9</td>
<td>32.7 ± 0.1</td>
<td>5.4σ</td>
</tr>
</tbody>
</table>

In the decays $\Lambda_s^+ \rightarrow pK^-\pi^+$ and $\Lambda_s^+ \rightarrow p\pi^+\pi^-$, the detection efficiencies are estimated with data-driven MC samples generated according to the results of a simple partial wave analysis (PWA) by the covariant helicity coupling amplitude [24, 25] for the quasi-two body decays. In the decay $\Lambda_s^+ \rightarrow p\pi^+\pi^-$, prominent structures arising from $p^0(770)$ and $f_0(980)$ resonances are observed in the $M_{\pi^+\pi^-}$ distribution as shown in the insert plot of Fig. 1(b), and are included in PWA. Due to the limited statistics and relatively high background, the PWA does not allow for a reliable extraction of BFs for intermediate states; it however does describe the kinematics well and it is reasonable for the estimation of the detection efficiency. The corresponding uncertainty is taken into account as a systematic error. For the decays $\Lambda_s^+ \rightarrow pK^+K^-$ via ϕ or non-ϕ, the detection efficiencies are estimated with phase space MC samples, where the angular distribution of the decay $\phi \rightarrow K^+K^-$ is considered.

We measure the relative BFs of the SCS decays with respect to that of the CF decay $\Lambda_c^+ \rightarrow pK^-\pi^+$, and the absolute BFs by incorporating $\mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.84 \pm 0.27 \pm 0.23)%$ from the most recent BESIII measurement [15]. Several sources of systematic uncertainty, including tracking and PID efficiencies, the total number of $\Lambda_c^+ \Lambda_c^+$ pairs in data, cancel when calculating the
ratio of BFs, due to the similar kinematics between the SCS and CF decays. When calculating these uncertainties, cancellation has been taken into account whenever possible.

Table II. The systematic uncertainties (in %) in the relative BF measurements. The uncertainty of the reference BF B_{ref} applies only to the absolute BF measurements.

<table>
<thead>
<tr>
<th>Sources</th>
<th>$\Lambda_c^+ \rightarrow p\pi^+\pi^-\Lambda_c^+ \rightarrow p\phi$</th>
<th>$\epsilon K^+K^-\epsilon$ nom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>1.1</td>
<td>1.6</td>
</tr>
<tr>
<td>PID</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>V_ϵ requirement</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>K_s^0/Λ vetoes</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>ΔE requirement</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Fit</td>
<td>2.7</td>
<td>5.8</td>
</tr>
<tr>
<td>Cited BR</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>MC model</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>6.7</td>
<td>7.2</td>
</tr>
<tr>
<td>B_{ref}</td>
<td>6.1</td>
<td>6.1</td>
</tr>
</tbody>
</table>

The uncertainties associated with tracking and PID efficiencies for π, K and proton are studied as a function of (transverse) momentum with samples of $e^+e^-\rightarrow\pi^+\pi^-\pi^0$, $K^+K^-\pi^+\pi^-$ and $pp\pi^+\pi^-$ from data taken at $\sqrt{s} > 4.0$ GeV. To extract tracking efficiency for particle i (i = π, K, or proton), we select the corresponding samples by missing particle i with high purity, the ratio to find the track around the missing direction is the tracking efficiency. Similarly, we select the control sample without PID requirement for particle i, and then the PID requirement is further implemented. The PID efficiency is the ratio between the number of candidate without and PID requirement. The differences on the efficiency between the data and MC simulation weighted by the (transverse) momentum according to data are assigned as uncertainties.

The uncertainties due to the V_ϵ requirements and MC statistics K_s^0/Λ vetoes (in $\Lambda_c^+ \rightarrow p\pi^+\pi^-\Lambda_c^+ \rightarrow p\phi$ only) are investigated by repeating the analysis with alternative requirements. $V_\epsilon < 0.25$ cm, $|M_{\pi^+\pi^-} - M_{\text{PDG}}^{\pi^+\pi^-}| > 20$ MeV/c2 and $|M_{\pi^-\pi^+} - M_{\text{PDG}}^{\pi^-\pi^+}| > 8$ MeV/c2, respectively). The result is taking the difference in the BF are taken as the uncertainties. Uncertainties related to the ΔE resolution are estimated by widening the ΔE windows from 3σ to 4σ in the fit range, signal shape, background shape and expected number of peaking background. The resultant changes in the BFs are taken as uncertainties. For the decay $\Lambda_c^+ \rightarrow pK^-\pi^+$, the signal yields are determined from fits to the M_{BC} distribution. Alternative fits are carried out by varying the fit range, signal and background shapes for both M_{BC} and $M_{pK^-K^-}$ distributions and ΔE sideband region.

The following four aspects are considered for the MC simulation model uncertainty. a) The uncertainties related to the beam energy spread are investigated by changing its value in simulation by ± 0.4 MeV, where the nominal values is 1.5 MeV determined by data. The larger change in the measurement is taken as systematic uncertainty. b) The uncertainties associated with the input line shape of $e^+e^-\rightarrow\Lambda_c^+\Lambda_c^-$ cross section is estimated by replacing the line shape directly from BESIII data with that from Ref. [26]. c) The Λ_c^+ polar angle distribution in $e^+e^-\rightarrow\Lambda_c^+\Lambda_c^-$ is parameterized with $1 + a \cos^2 \theta$, where a is extracted from data. The uncertainties due to the Λ_c^+ polar angle distribution is estimated by changing a value by one standard deviation. d) The decays $\Lambda_c^+ \rightarrow pK^+\pi^+$ and $\Lambda_c^+ \rightarrow p\pi^+\pi^-$ are modeled by a data-driven method according to PWA results. The corresponding uncertainties are estimated by changing the intermediate states included, changing the parameters of the intermediate states by one standard deviation quoted in the PDG [16], and varying the background treatment in the PWA and the output parameters for the coupling.

Assuming all of the above PWA uncertainties are independent, the uncertainty related to MC modelling is the quadratic sum of all individual values. For the non-ϕ decay $\Lambda_c^+ \rightarrow pK^+K^-$, phase space MC samples with S-wave for K^+K^- pair is used to estimate the detection efficiency. An alternative MC sample with P-wave between K^+K^- pair is also used, and the resultant difference in efficiency is taken as the uncertainty. The uncertainties due to limited MC statistics in both the measured and reference modes are taken into account.

In summary, based on 567 pb$^{-1}$ of e^+e^- annihilation data collected at $\sqrt{s} = 4.599$ GeV with the BESIII detector, we present the first observation of the SCS decays $\Lambda_c^+ \rightarrow p\pi^+\pi^-$, and improved (or comparable) measurements of the $\Lambda_c^+ \rightarrow p\phi$ and $\Lambda_c^+ \rightarrow pK^+K^-\epsilon$ BFs compared to PDG values [16]. The relative BFs with respect to the CF decay $\Lambda_c^+ \rightarrow pK^-\pi^+$ are measured. Taking $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.84 \pm 0.27 \pm 0.23)\%$ from Ref. [15], we also obtain absolute BFs for the SCS decays. All the results are summarized in Table III. The results provide important data to understand the dynamics of Λ_c^+ decays. They especially help to distinguish predictions from different theoretical models and understand contributions from factorizable effects [1].

The BESIII collaboration thanks the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525, 11135008, 11232544, 11332544, 11375170, 11275189, 11475169, 11475164; the Chinese Academy of Sciences...
TABLE III. Summary of relative and absolute BFs, and comparing with the results from PDG [16]. Uncertainties are statistical, experimental systematic, and reference mode uncertainty, respectively.

<table>
<thead>
<tr>
<th>Decay modes</th>
<th>(B_{\text{mode}} / B_{\text{ref}}) (This work)</th>
<th>(B_{\text{mode}} / B_{\text{ref}}) (PDG average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_c^+ \to p\pi^+\pi^-)</td>
<td>((6.70 \pm 0.48 \pm 0.25) \times 10^{-2})</td>
<td>((6.9 \pm 3.6) \times 10^{-2})</td>
</tr>
<tr>
<td>(\Lambda_c^+ \to p\phi)</td>
<td>((1.81 \pm 0.33 \pm 0.13) \times 10^{-2})</td>
<td>((1.64 \pm 0.32) \times 10^{-2})</td>
</tr>
<tr>
<td>(\Lambda_c^+ \to pK^+K^-) (non-(\phi))</td>
<td>((9.36 \pm 2.22 \pm 0.71) \times 10^{-3})</td>
<td>((7 \pm 2 \pm 2) \times 10^{-3})</td>
</tr>
<tr>
<td>(\Lambda_c^+ \to p\pi^+\pi^-)</td>
<td>((3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3})</td>
<td>((3.5 \pm 2.0) \times 10^{-3})</td>
</tr>
<tr>
<td>(\Lambda_c^+ \to p\phi)</td>
<td>((1.06 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-3})</td>
<td>((8.2 \pm 2.7) \times 10^{-4})</td>
</tr>
<tr>
<td>(\Lambda_c^+ \to pK^+K^-) (non-(\phi))</td>
<td>((5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4})</td>
<td>((3.5 \pm 1.7) \times 10^{-4})</td>
</tr>
</tbody>
</table>

(CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particle and Interactions (CICPI); Joint Large-Scale Scientific Facility; the Collaborative Research Center CRC-1044, FOR 2359, German Research Foundation DFG under Contract No. 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. 101, Collaborative Research Center CRC-1044, FOR 2359, German Research Foundation DFG under Contract No. 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. 101, Collaborative Research Center CRC-1044, FOR 2359, German Research Foundation DFG under Contract No. 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. 101, Collaborative Research Center CRC-1044, FOR 2359.