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Activity-driven networks are a powerful paradigm to study epidemic spreading over time-varying
networks. Despite significant advances, most of the current understanding relies on discrete-time
computer simulations, in which each node is assigned an activity potential from a continuous distri-
bution. Here, we establish a continuous-time discrete-distribution framework toward an analytical
treatment of the epidemic spreading, from its onset to the endemic equilibrium. In the thermody-
namic limit, we derive a nonlinear dynamical system to accurately model the epidemic spreading and
leverage techniques from the fields of differential inclusions and adaptive estimation to inform short-
and long-term predictions. We demonstrate our framework through the analysis of two real-world
case studies, exemplifying different physical phenomena and time scales.

PACS numbers: 89.75.Hc, 64.60.aq, 87.23.Ge

The study of time-varying networks has greatly con-
tributed to our understanding of epidemic spreading,
pushing the state of the art beyond the limitations
imposed by time-invariant networks of contacts [1–9].
Activity-driven networks (ADNs) have emerged as a pow-
erful paradigm to model the co-evolution of the network
of contacts and the individual dynamics [10–21]. Most
of the studies on ADNs are based on extensive Monte
Carlo simulations, and analytical results are only limited
to linearized mean-field approximations.
Here, we seek to establish an analytical framework to

study the entire dynamics of the epidemic spreading at
the population level (from the zero-infected condition to
the endemic equilibrium). Differently from the original
ADN formulation, where a discrete-time epidemic model
is implemented with a continuous probability distribu-
tion for the nodes’ activities, we formulate a continuous-
time model with a discrete distribution. This change
of perspective leads to a rigorous analytical treatment,
without the need of extensive Monte Carlo simulations
that have constituted the primary tool for the study of
ADNs. Our approach is not prone to the confounds as-
sociated with the selection of the time step, which has
been proven to influence the dynamics of the discrete-
time dynamical process [22]. Our theory relies on a re-
duced number of parameters with respect to traditional
ADNs [10–20]. This is critical for robust parameter iden-
tification from real-world data [15, 23–26].
We consider a (large) population of n individuals,

each associated with a node of a time-varying undirected
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graph G(t) = (V , E(t)), with t ∈ R
+. V = {1, . . . , n}

is the node set and E(t) is the time-varying edge set,
which is related to the network of contacts. We focus
on a susceptible-infected-susceptible process [27]. Each
node v ∈ V is assigned a time-invariant activity rate av,
which represents the expected number of contacts that
node v generates in a unit time interval. Starting from
t = 0, node v becomes active after a time that is sampled
from an exponentially distributed random variable with
parameter av [28]. When a node activates, it contacts
exactly one node uniformly at random in V , generating a
single edge. If this edge connects an infected node with
a susceptible one, then the epidemics propagates with a
fixed probability λ, otherwise nothing happens. We sup-
pose that the duration of the contact is instantaneous, so
that λ is considered a per-contact infection probability.
The edge is instantaneously removed, and the node may
activate again according to the same rule. Each infected
node recovers after a time that is drawn from an expo-
nentially distributed random variable with parameter µ,
becoming susceptible again. Thus, µ−1 is the expected
time needed by an individual to recover [29].

The proposed discrete activity distribution follows a
power-law with k equidistant activation classes, charac-
terized by an activity rate ai (a1 < · · · < ak). For the
generic i-th class, we denote with ni its number of nodes
and we let ni ∝ a−γ

i . The parameter γ controls the
heterogeneity among individuals, similar to the classical
ADN paradigm with a continuous distribution of activity
potentials [30].

We indicate with Yv(t) ∈ {S, I} the state of node v at
time t, which can be either susceptible (S) or infected (I),
and we assemble all the states in a vector Y (t) ∈ {S, I}V .
Towards analyzing the epidemic spreading at the popu-
lation level, we map Y (t) to a k-dimensional stochastic
process Z(t) := Z[Y (t)], encapsulating the fraction of
infected nodes in each activation class. The i-th compo-
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nent, Zi(t), is the fraction of infected nodes with activity
rate ai, at time t.
In the thermodynamic limit n → ∞, the fraction of

nodes (n1/n, . . . , nk/n) in each of the activation classes
converges to (η1, . . . , ηk), independent of n, due to the
central limit theorem. Then, Kurtz’ theorem [31] en-
sures that for every finite time horizon, the stochastic
process Z(t) is close to a deterministic dynamical system
with vector variable ζ(t), solution of the following set of
ordinary differential equations (ODEs):

ζ̇i = −µζi + λ(1− ζi)(aix1 + x2), (1)

with i = 1, . . . , k and ζi(0) = Zi(0). Here, the macro-
scopic variable x1 =

∑

ηhζh represents the fraction of in-
fected individuals across all classes, which is the main ob-
servable in the study of epidemic spreading. The macro-
scopic variable x2 =

∑

ηhahζh takes into consideration
the fraction of infected nodes weighted by their individ-
ual activity rates. In general, we define xj =

∑

ηha
j−1
h ζh;

Table I summarizes our notation.
From (1), we appreciate that the drift in the fraction of

infected nodes in each class is determined by three effects:
the recovery of infected nodes (−µζi); the spreading as-
sociated with active nodes in the i-th class generating
contacts toward infected nodes (λ(1 − ζi)aix1); and the
spreading related to active infected nodes generating con-
tacts with the nodes of the i-th class (λ(1 − ζi)x2).
The elegant form of the system dynamics (1) in terms

of the variables ζ1, . . . , ζk lends itself into rigorous and
revealing schemes to gain insight into the physics of the
epidemic spreading. Here, we focus on two complemen-
tary strategies that could be systematically utilized for
short- and long- term predictions. First, we propose the
use of differential inclusions to establish rigorous bounds
for the transient and endemic equilibrium of the system.
Second, we explore the integration of estimation tech-
niques to accurately predict the population of infected
individuals from sporadic data which could be collected
in real-world scenarios.
Integrating (1) allows to closely simulate the epidemic

spreading without the need of Monte Carlo simulations.
To verify this claim and demonstrate the correspondence
between continuous- and discrete-time epidemic models,
we consider two different dynamics on real-world phe-
nomena, modeled through ADNs: flu spreading in a uni-

TABLE I: Notation.

k number of activation classes
ai activation rate of nodes in the i-th class
ηi fraction of nodes in the i-th class
λ per-contact infection probability
µ recovery rate
ζi fraction of infected nodes in the i-th class

xj macroscopic variables, xj =
∑

ηha
j−1

h ζh

αj j-th moment of the distribution α, αj =
∑

ηha
j

h
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FIG. 1: Time evolution of the fraction of infected nodes
for the flu (a) and Twitter (b) case studies. Comparison
between discrete-time continuous-distribution ADN
process (blue, dashed), our continuous-time
discrete-distribution approach (green, dotted) model,
and theoretical predictions (red, solid) from (1).

versity campus and trend diffusion on Twitter. System
parameters are obtained from case studies [10, 32–35],
as detailed in the supplementary material, and are sum-
marized in Table II. We compare the outcome of Monte
Carlo simulations averaged over 200 trials for both the
continuous- and the discrete-time processes, along with
the integration of the deterministic system (1). In both
examples, the activity distribution is discretized over
k = 59 equidistant activation classes. Fig. 1 demon-
strates the equivalence of our approach with respect to
traditional ADNs in Monte Carlo simulations, along with
the validity of equation (1) to exactly predict the epi-
demic spreading.
To facilitate the mathematical treatment of the k-

dimensional system (1), we rewrite the system dynamics
in terms of the first k macroscopic variables, x1, . . . , xk.
Through this change of variables, the epidemic spreading
is governed by the following ODEs:























ẋ1 = (λα1 − µ)x1 + λx2 − 2λx1x2,
ẋ2 = λα2x1 + (λα1 − µ)x2 − λx1x3 − λx2

2,
ẋ3 = λα3x1 + λα2x2 − µx3 − λx1x4 − λx2x3,
. . .
ẋk = λαkx1 + λαk−1x2 − µxk − λx1

∑

ηha
k
hζh − λx2xk,

(2)
where αj =

∑

ηha
j
h are the moments of the activity rates

distribution, whose first two values are also reported in

TABLE II: Parameters of real-world case studies based
on ADNs.

Parameter flu Twitter
n 30896 531788
k 59 59
γ 2.09 2.10
λ 0.430 0.332
µ 0.138 0.0997
α1 0.317 0.536
α2 0.381 0.781

time unit day minute
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Table II for completeness. This system is well-posed since
the term

∑

ηha
k
hζh in the k-th equation is a linear com-

bination of the linearly independent variables x1, . . . , xk.

The study of (2) offers important insight on the epi-
demic spreading, beyond the mere computation of the
epidemic threshold (α1 +

√
α2)

−1 from linear stability
analysis [10–12]; details are presented in the supple-
mentary material. However, numerical instabilities may
emerge when considering power-laws with γ ∈ [2, 3],
where all statistical moments from the second onwards
may blow up. Moreover, prescribing initial conditions
for higher order macroscopic variables beyond x1 may be
not feasible when dealing with experimental data.

A possible approach to address these issues is to
project the k-dimensional dynamics to a lower dimen-
sional space consisting of only k∗ ≪ k equations. We ap-
proximate the term xk∗+1 using two elementary bounds:
a1xk∗ ≤ xk∗+1 ≤ akxk∗ and xk∗+1 ≤ αk∗ . Using these
bounds, we can reduce system of k ODEs in (2) to a
system of k∗ ordinary differential inclusions (ODIs) [36],
consisting of one inclusion and k∗ − 1 equations.

If k∗ = 1, we bound a1x1 ≤ x2 ≤ min{α1, akx1}, re-
ducing (2) to a single ODI. This one-dimensional system
should not be contemplated to accurately predict the
evolution of the process during the transient, between
the zero-infected condition and the endemic equilibrium,
due to the conservativeness of the bounds during such
a transient phase. However, it can be effectively used
to analytically determine an interval I for the endemic
equilibrium x̄1, which is

[

max

{

λα1

λα1 + µ
,
λ(ak + α1)− µ

2λak

}

,
λ(a1 + α1)− µ

2λa1

]

,

(3a)

if λα1 > µ, and

[

λ(a1 + α1)− µ

2λa1
,min

{

λα1

λα1 + µ
,
λ(ak + α1)− µ

2λa1

}]

,

(3b)

if λα1 < µ. Notice that, if λα1 = µ, we analytically
compute x̄1 = 1/2.

To demonstrate the use of these bounds we refer, here
and henceforth, to the two real-world case studies on flu
spreading and trend diffusion on Twitter. From sim-
ulations in Fig. 2, we evince that the accuracy of the
bounds depends on the system parameters. Specifically,
our results suggest that the closer is the endemic state to
x̄1 = 1/2 (that is, α1λ = µ), the more precise the bounds
are.

An improved prediction of the transient phase is ob-
tained with k∗ = 2, which leads to an ODI for the evolu-
tion of x2, coupled to the first ODE in (2). As detailed
in the supplementary material, we establish the two fol-

20 40 60 80

0.2

0.4

0
0

time (days)

x1(t)

(a)

20 40 60

0.5

1

0
0

time (min)

x1(t)

(b)

FIG. 2: Averaged Monte Carlo simulations of a
discrete-time continuous-distribution ADN process
(blue) and theoretical bounds on the endemic
equilibrium state (computed for k∗ = 1, in red), for
flu (a) and Twitter (b) case studies. From Table II,
α1λ/µ is equal to 0.988 in (a) and 1.785 in (b).

lowing ancillary ODEs:

ẋ2 = λ(α2 − φε,x2
(x1))x1 + (λα1 − µ)x2 − λx2

2,
(4a)

ẋ2 = λ(α2 − φε,x2
(1 − x1))x1 + (λα1 − µ)x2 − λx2

2,
(4b)

where φε,x2
(x1), is a continuous function that, in the

limit ε → 0, tends to the Heaviside function

φε,x2
(x1) →

{

a1x2 if x1 < 1/2,
min{akx2, α2} if x1 > 1/2.

(5)

The upper- and lower-bounds for x1 are obtained by
coupling the first ODE in (2) with (4a) and (4b), and
integrating in the limit as ε → 0. Simulation results in
Fig. 3 demonstrate the accuracy of the bounds in cap-
turing the transient response. Higher endemic equilibria
seem manifest into tighter prediction bounds during the
transient, albeit the upper bound becomes conservative
as time progresses. In general, the predictions of the en-
demic state from k∗ = 2 are less precise than the simpler
closed-form results for k∗ = 1. This is related to the so-
lutions of the ancillary ODEs (4a) and (4b) leaving the
bounds for k∗ = 1. With this in mind, the overall predic-
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FIG. 3: Averaged Monte Carlo simulations of a
discrete-time continuous-distribution ADN process
(blue) and theoretical bounds on the dynamics of the
epidemic spreading (computed for k∗ = 2 with ε = 10−3,
in red), for flu (a) and Twitter (b) case studies.
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tion accuracy could be improved combining the bounds
in Figs. 2 and 3.
An alternative strategy for the analysis of system (2)

entails the use of epidemic data, sampled at the popula-
tion level at a time period T , to drive the reduction of
the dynamics on a lower dimensional space. Given the
accuracy of (4) in estimating the transient response of
the system, we focus on a two-dimensional dynamics in
terms of x1 and x2. With reference to (2), we consider
only the first two ODEs and we hypothesize that x3 is
linear in x1 with a proportionality constant C that is es-
timated from epidemic data. Specifically, we propose the
following two-dimensional dynamics:

{

ẋ1 = −µx1 + λα1x1 + λx2 − 2λx1x2,

ẋ2 = λα2x1 + (λα1 − µ)x2 − λCx2
1 − λx2

2.
(6)

As a first approximation, we hypothesize that C is con-
stant throughout the entire epidemic spreading and set
to C = α2, which corresponds to a homogeneous dis-
tribution of infected individuals over all the activation
classes. Our prediction of the infected population is de-
fined piece-wise in time. In particular, we we denote the

piece-wise predictions with x
(h)
1 (t) and x

(h)
2 (t), in the in-

terval t ∈ [hT, hT + T ) [37, 38], where h ∈ Z
+. These

predictions are informed by the knowledge of the over-
all infected fraction of population XhT at the sampling
times hT . We initialize the algorithm at time t = 0 by

setting x
(0)
1 (0) = X0 and x

(0)
2 (0) = X0α1. The algo-

rithm runs through the following steps: i) system (6) is
integrated from hT to (h+ 1)T , producing the solutions

x
(h)
1 (t) and x

(h)
2 (t); ii) at t = (h+ 1)T , the initial condi-

tions for marching in time are set as x
(h+1)
1 (t) = X(h+1)T

and x
(h+1)
2 (t) = x

(h)
2 (t); and iii) h is incremented by 1

and the process resumes to step i).
This algorithm is only based on the fraction of infected

nodes at the inception of each time window of duration T ,
which is central for real-world applications. For example,
it may be possible to periodically estimate the number
of individuals affected by flu or the number of mentions
and re-tweets of a specific trend. The knowledge of the
detailed state of all the network nodes is not required by
the algorithm, which dispenses with information about
higher order microscopic variables. In Fig. 4, we demon-
strate the use of the prediction algorithm against a sim-
ulation for the flu case study, by using a time window of
a day or a week. Short-term forecasts (daily) are very
close to the real dynamics (the average error is less than
1%), while forecasts on longer horizons (weekly) tend to
be less accurate (with an average error around 10%).
To improve on the finite horizon forecast algorithm, we

may treat C as piece-wise constant in time and adaptively
update it during each prediction window. We initiate the
algorithm by setting C0 = α2. Then, fixing a real con-
stant β > 0, at the end of each iteration, Ch is updated
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FIG. 4: Simulation of a discrete-time
continuous-distribution ADN (blue), for the flu case
study, and our predictions over a finite time horizon of
one day and one week (red). Predictions in (a) and (b)
are obtained with a constant estimate for C, while those
in (c) and (d) are based on the on-line adaptive update
in (7) with β = 1. A similar result for the Twitter case
study is presented in the supplementary material.

as [37, 38]

Ch+1 = Ch

(

1 + β
X(h+1)T − x

(h)
1 ((h+ 1)T )

1− 2X(h+1)T

)

. (7)

Here, C is incremented by a term that is proportional
to the prediction error at the inception of a new predic-
tion window. The effect of the denominator is to change
the sign of the increment when X(h+1)T > 1/2, follow-
ing a line of reasoning similar to the one used to define
φε,x2

(x1) in (5). In Fig. 4, we demonstrate the improve-
ment of the approach, which is successful in closely pre-
dicting population level dynamics even with only data
available on a weekly basis.
In summary, we have proposed a new framework to

study epidemic spreading over ADNs. While intuition
may conceive epidemic models to be executed in discrete-
time on nodes whose activity is drawn from a continu-
ous distribution, our approach posits a different view.
By discretizing the activity distribution and considering
a continuous-time evolution, we put forward a mathe-
matically tractable approach to study epidemic spreading
from its onset to the endemic equilibrium. In the ther-
modynamic limit, we have shown that epidemic spread-
ing can be described through a set of coupled ODEs.
Techniques from the field of differential inclusions were
leveraged to gather insight on the transient response and
endemic equilibrium. Toward connecting the theoretical
framework with real data, we introduced an adaptive es-
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timation technique that affords the accurate prediction
of the epidemics from coarse information only seldom ac-
quired. Although we specialized the treatment to SIS
processes, the framework could be extended to other pro-
cesses over ADNs [10–21], by tailoring the individual dy-
namics.

Our continuous-time discrete-distribution framework
offers a rigorous mathematical basis for overcoming some
of the limitations of the ADN paradigm. For example,
the treatment of non-exponential inter-event times may
be tackled by modifying the ODE system (1) to incorpo-
rate specific statistical properties of the inter-event times
distribution [39]. Non mean-field dynamics may be stud-
ied by partitioning the nodes in several classes of activa-
tion, differentiating the probability of contagion within
each class and between different classes.
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