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We present and demonstrate a formalism by which three dimensional (3D) Bragg x-ray coherent diffraction

imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-

ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray

wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a

gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of

feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where

sample manipulation is difficult.

In materials, nanoscale distributions of strain and lattice7

distortions in crystals often dictate performance and prop-8

erties [1], but are difficult to measure under realistic work-9

ing conditions. Increasingly, Bragg coherent x-ray diffraction10

imaging (BCDI) is being utilized at synchrotron sources to ad-11

dress this challenge by non-destructively imaging nanoscale12

strain fields in crystalline materials in three dimensions (3D)13

using penetrating hard x-rays [2–7]. While these studies have14

shown great promise, the breadth of feasible 3D BCDI mea-15

surements could expand substantially if current experimen-16

tal requirements such as sample rotation could be eliminated17

without sacrificing imaging capability.18

In a Bragg diffraction experiment, the reciprocal space vol-19

ume about a Bragg peak can be measured by finely scanning20

the wavelength of the incident beam (as opposed to its rela-21

tive angle). Recent investigations have successfully mapped22

3D Bragg peaks from crystals in this manner [8–10], but nu-23

merical phase retrieval and inversion of such measurements24

into 3D real space images have yet to be demonstrated. This25

capability would enable new strain imaging studies of mate-26

rials in environments where sample manipulation is difficult27

and the details of nanoscale strain distribution and evolution28

remain elusive – for example during high-temperature crystal29

synthesis.30

Here, we present a new variable-wavelength BCDI (vw-31

BCDI) approach that reconstructs a 3D image of strain and32

density of a crystalline nanoparticle from x-ray energy scan33

measurements, eliminating the need to rotate the sample.34

To reconstruct 3D images from this type of data, we intro-35

duce a new phase retrieval approach designed to handle x-ray36

wavelength (λ) variability in BCDI, and we demonstrate the37

method with experimental data.38

Using BCDI, lattice distortions within a 3D nanocrystal39

can be determined from the coherent diffraction intensity dis-40

tribution about a Bragg peak [4, 11]. A typical monochro-41

matic BCDI experiment is shown schematically in Figure42

1(a), which depicts a nanocrystal (ρ) that is illuminated with a43

coherent x-ray plane wave. The incident beam wavevector ki,44

exit beam wavevector kf , and nanocrystal are oriented such45

that the scattering vector q = kf − ki is in the vicinity of a46

Bragg reflection at the reciprocal lattice point GHKL. (Here,47

|k| = 2π/λ.) The 3D intensity distribution surrounding the48

GHKL Bragg peak from ρ is shown schematically in Figure49

1(b) as a yellow isosurface. Near the Bragg condition, an area50

detector will measure a cut through this 3D intensity distribu-51

tion along the plane normal to kf that intersects q [13, 14].52

Different slices can be measured by varying Q ≡ q−GHKL,53

the reciprocal space distance from the center of the area de-54

tector to the Bragg peak. As shown in Figure 1(a), in a typical55

single-wavelength experiment, Q changes over the course of56

a scan of the sample angle θ (± ∼ 0.5◦) while |q| remains57

fixed. Such an angle scan (rocking curve) is depicted in Fig-58

ure 1(b) as a series of parallel grey planes slicing through the59

3D Bragg peak intensity distribution. Thus, the Bragg 3D in-60

tensity distribution is recorded slice-by-slice. The oversam-61

pled intensity encodes the magnitude, but not the phase, of the62

3D Fourier transform of the diffracting nanocrystal. To form a63

strain-sensitive image of the crystal, the set of measured slices64

that sample the 3D coherent intensity distribution are phased65

using reconstruction algorithms [12] that utilize forward and66

inverse discrete 3D Fourier transforms (F3D and F−1

3D ). How-67

ever, because current BCDI reconstruction approaches apply68

3D discrete Fourier transforms directly to the data set, mea-69

surements that utilize these algorithms need to be performed70

using a fixed x-ray wavelength.71

An alternative method of measuring the 3D Bragg coher-72

ent diffraction intensity distribution is to vary the length of73

the scattering vector q while keeping the sample orientation74

fixed. This can be done by scanning the x-ray wavelength to75

change |k| and |q|, thus varyingQ as shown in Figure 1(c) [8–76

10]. As compared to the monochromatic case, such a scan will77

result in a different (though equally valid) set of slices with78

which to assemble the 3D Bragg intensity distribution (Fig-79

ure 1(d)). However, such a data set is not suitable for discrete80

F3D-based BCDI reconstruction algorithms because |k| is not81

constant over the scan, and the scaling of reciprocal space in82

the detector changes at every measured slice. In the work fea-83

tured here, this scaling changes by ∼ 4% from the beginning84

to the end of the scan. Without accounting for the changing85

wavelength in the data set, this scaling builds in an artificial86

asymmetry in the fringe pattern about the Bragg peak. This87

situation is problematic and should not be ignored in BCDI88
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FIG. 1. This schematic depicts an isolated nanocrystal illuminated with a coherent beam and oriented such that the incident (ki) and exit (kf )

beam wave vectors satisfy a Bragg condition for the HKL reflection (denoted by the reciprocal space vector GHKL). In such an experiment,

the area detector accesses a 2D slice through the 3D reciprocal space intensity pattern. To measure various components of the 3D Bragg

peak intensity distribution, the scattering condition q = kf − ki must be changed relative to GHKL, thus changing Q = q −GHKL. In a

monochromatic experiment (a,b), this is done by changing the angle of the sample at a fixed |q|. Alternatively, with a fixed sample position,

the reciprocal space volume about the Bragg peak can be sampled by changing the wavelength of the x-ray beam (c,d).

because asymmetries of this order are also indicative of lattice89

imperfections in the crystal [15]. Interpolation of vwBCDI90

data onto a regular q-space grid could be performed in order91

to utilize current algorithms. However, typical data interpo-92

lation approaches alter the observed Poisson photon counting93

statistics of the underlying intensity probability distribution94

function [16, 17] in weakly scattering regions that often con-95

vey high-spatial-resolution information.96

Thus, reconstructing a 3D image from a vwBCDI mea-97

surement without interpolating intensity data requires a 3D98

Fourier transform operations that account for the changing99

wavelength on a slice-by-slice basis. A related concept has100

been successfully implemented in reconstructing broadband101

forward scattering coherent diffraction patterns [18], but did102

not deal with the reconstruction of a reciprocal space volume.103

To address this challenge for the Bragg geometry, we leverage104

the properties of the Fourier slice projection theorem [19, 20]105

and the relationship between spatial sampling and array size106

in a 2D discrete Fourier transform to define a slice-by-slice 3D107

Fourier transform appropriate for vwBCDI experiments. Our108

approach uses these concepts to perform simultaneous Fourier109

transformation and interpolation of each λ-dependent slice of110

the Bragg intensity distribution.111

In a monochromatic BCDI scan of a Bragg peak in which112

Qj varies over j = 1 · · ·J two dimensional intensity mea-113

surements, the j th 2D wave field at the detector is given by114

[13, 14, 21]: ψj = FRQjρ, in accordance with the Fourier115

slice projection theorem. In this expression, Qj is a multi-116

plicative linear phase gradient defined as Qj = exp[i r · Qj]117

that displacess the detector plane in reciprocal space away118

from Bragg peak maximum (the origin in Q). R is a 3D→2D119

projection along the direction of kf , F is a 2D Fourier trans-120

form, and ψj is the far field exit wave in the detector. The121

measured intensity is then given by Ij = |ψj |2.122

In calculating ψj , F is typically implemented with a dis-123

crete 2D Fourier transform of a pixelated image array. In this124

case, the relationship between the pixel size in real and recip-125

rocal space in the plane is fixed [22]. In each dimension of126

the projection plane, the pixel size in real space is given by:127

psamp = λD/(Npixpdet), where Npix is the number of pixels128

along one dimension of the square array, pdet is the edge size129

of a square pixel in the area detector used in the measurement,130

andD is the sample-to-detector distance. In vwBCDI, we aim131

to maintain a constant psamp for all ψ(λj). To satisfy this con-132

dition when D and pdet are fixed, we can consider Npix as a133

free parameter that varies with λj such that λj/Npix(λj) is134

constant. So long as Npix for all λj is greater than the number135

of pixels in the physical detector (Ndet), as in the case de-136

scribed here, then a direct comparison can be made between137

ψ(λj) and experimental measurements.138

Based on this principle, we introduce a modified 2D Fourier139

transform operator Fλ = S−1

λ FSλ that maintains a constant140

psamp by varying Npix. Here, Sλ is an operator that pads the141

effective number of pixels in the array to an integer value142

Npix(λj) that scales with λj , enforcing the appropriate pixel143

sampling of each ψj via the discrete 2D Fourier transform.144

With this approach, the pixel size at the sample in the pro-145

jection plane is set by experimental parameters. For a λ scan146

with a fixed step size of δλ, psamp of the real space image is147

given by (δλ)D/pdet. Additionally, the integer range of Npix148

is set by the largest λ in the scan: Nmax
pix = λmaxD/(psamppdet).149

Therefore, invoking Sλ for a vwBCDI data set requires that150

the projection plane array be sampled with pixels of size psamp151

and resized to (Nmax
pix + 1 − j) in both dimensions for a given152

λj . The S−1

λ operator then resizes the array to a fixed size for153

all λj . In the case of Fλ, this size is Ndet × Ndet, where Ndet154

is the number of physical pixels in the area detector.155

Thus, the coherent wave field at the detector in a vwBCDI156
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experiment is given by:157

ψj = Fλj
RQjρ. (1)

To better illustrate the details of this calculation, we step158

through these operations. To begin, we define a conjugate159

pair of orthogonal spatial coordinates based on the orientation160

of kf : (rx, ry, rz) and (qx, qy, qz). The former is the basis for161

the real space vector r and the latter for the reciprocal space162

q and Q. In real space, two directions rx and ry are normal163

to kf and are aligned with the edges of a square area detec-164

tor (outlined in black in Figure 1(b)). The third direction rz165

is parallel to kf . qx, qy , and qz are oriented parallel to their166

conjugate r-space counterparts.167

A visual representation of the operators in Equation 1 is168

shown in Figure 2. First the crystal ρ is multiplied by a phase169

factor that depends on Qj corresponding to a slice of the170

Bragg peak measured at a given λj . The complex 3D quantity171

Qjρ is then projected onto the (rx, ry) plane, sampled with172

real space pixels of size psamp. By manipulating the number of173

pixels in the image array, the Fλj
operator adjusts the scaling174

of ψj to correspond to λj . In this way, a series of diffraction175

patterns {ψ1 · · ·ψJ} cutting through the Bragg intensity dis-176

tribution can be generated for a scan of λ, as shown in Figure177

2(g).178

In order to enable phase retrieval and 3D image reconstruc-179

tion, a conjugate inversion procedure must be introduced that180

converts the reciprocal space information in {ψ1 · · ·ψJ} back181

to real space to recover ρ. Here, we take advantage of another182

feature of the Fourier slice projection theorem: that a 2D→3D183

back-projection operation (R†) can be used to re-assemble a184

3D object from a series of 2D projections. We also utilize185

the fact that each ψj is offset from the Bragg peak by Qj.186

The component of Qj along kf encodes the spatial frequency187

along rz for the projected structural information in the (rx, ry)188

plane contained in ψj . Thus, ρ can be expressed by inverting189

the operators in Equation 1 and summing the resulting back-190

projections.191

ρ =

J
∑

j=1

Q∗
jR†F−1

λj
ψj . (2)

In this expression, F−1

λj
= S−1

λj
F−1Sλj

, and Q∗
j = exp[−i r ·192

Qj ] is the complex conjugate of Qj . In this expression, we193

use S−1

λj
to resize the real-space projection image to a size of194

Nmax
pix ×Nmax

pix .195

Here, we step through the inverse operators used in Equa-196

tion 2. Starting with a given ψj (amplitudes and phases197

known), F−1

λj
yields a projection of Qjρ on the (rx, ry) plane198

with pixel size psamp. Next, the back-projection operator R†
199

uniformly replicates this projection along rz . Finally, Q∗
j im-200

parts an oscillating phase profile that encodes the appropriate201

spatial frequency along rz for this slice. Q∗
j can also encode202

phase gradients along rx and ry that account for displacement203

of the diffraction pattern from the central pixel of the detector204

at each slice. The quantity Q∗
jR†F−1

λj
ψj is calculated for all205

J diffraction patterns and summed. This process is visualized206

in Supplemental Figure S1 for the simulated nanocrystal fea-207

tured in Figure 2a. It is shown that as the number of summed208

terms approach J = 100, the morphology and phase of the209

summation converge to ρ.210

We note that Fλ and F−1

λ generalize the forward and in-211

verse Fourier transform operations that describe the recipro-212

cal space 3D volume about a Bragg peak as measured by an213

area detector in a variable-wavelength measurement. Effec-214

tively, when Sλ and S−1

λ are unity, the operations described215

in Equations 1 and 2 are equivalent to the traditionally used216

forward and inverse discrete 3D Fourier transforms. Thus,217

by integrating them into a phase retrieval algorithm, Fλ and218

F−1

λ enable phase retrieval of vwBCDI data sets. Common219

phasing algorithms rely on minimizing the sum squared error220

between the measured intensity distribution and the far field221

exit wave of the reconstructed object: ǫ2 =‖ |ψ|−
√
I ‖2. We222

adopt the same approach here, defining the sum squared error223

as ǫ2 =
∑

j ‖ |ψj | −
√

Ij ‖2. This error metric then becomes224

the basis for determining a gradient ∂λ for phase retrieval, af-225

ter Ref [21]:226

∂λ =

J
∑

j=1

Q∗R†F−1

λ

(

ψj −
√

Ij
ψj

|ψj |

)

. (3)

Following Ref [12], we obtain the modulus constraint for227

vwBCDI: Pmρ = ρ − 1

2
∂λ, that enforces consistency be-228

tween the amplitudes of ψ{1···J} and the experimentally mea-229

sured intensity patterns. The modulus constraint, when used230

in combination with an object-bounding support, is central231

to iterative BCDI phase retrieval algorithms such as Hybrid232

Input/Output (HIO) and Error Reduction (ER) [23]. (Pseu-233

docode for ER/HIO implemented with ∂λ is included in the234

Supplemental Information.) With ∂λ, these reconstruction al-235

gorithms can be applied to experimental data.236

To demonstrate the phase retrieval approach introduced237

above, vwBCDI measurements were performed on a sub-238

micron-sized Au nanocrystal [24]. Measurements were per-239

formed with a mirror-focused coherent x-ray beam at the Sec-240

tor 34-ID-C beamline at the Advanced Photon Source. The241

111 Bragg condition was satisfied at 9 keV (far from any242

Au absorption edges) with a symmetric diffraction geometry243

(Bragg angle of θBr = 17◦). In this experiment, D = 0.62244

m, pdet = 55 µm, and Ndet = 256. The scattering geometry245

was fixed, and the energy of the incident beam was scanned246

from 8.85 to 9.15 keV in 6 eV increments (corresponding to247

a δλ ∼ 8.9 × 10−4 Å and λmin = 1.378 Å). The synchrotron248

undulator gap was adjusted at every energy step in order to249

provide nearly constant flux at all λj [10]. Under these con-250

ditions, psamp = 1.0 nm and Nmax
pix = 1576 [25]. For compar-251

ison, data were also collected at 9 keV with a rocking curve252

(θBr ± 0.35◦) in 0.01◦ angular increments.253

HIO and ER were used with the ∂λ gradient to reconstruct254

a 3D image of the Au crystal from the vwBCDI data, and255
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FIG. 2. Schematic of a slice-by-slice calculation of vwBCDI diffraction patterns. (a) The nanocrystal ρ is multiplied by a phase factor, resulting

(b) in Qjρ. (c) The 3D quantity Qjρ at a given λ is projected onto the (rx, ry) plane via the projection operator R. In order to properly scale

the diffraction pattern for this λ, the operator Fλ is invoked, defined as S−1

λ FSλ, shown in (d-f). (d) Sλ changes the number of pixels in

the image to Npix(λj) by padding with zeros. (e) A 2D Fourier transform F of the padded projection array is applied. (f) S−1

λ re-sizes the

resulting array back to a fixed pixel size, in this case Ndet ×Ndet. (g) In this manner, each slice (gray plane) through a 3D Bragg peak intensity

distribution (yellow isosurface) is calculated resulting in the set {ψ1 · · ·ψJ} that mimics a vwBCDI measurement. The inverse process of

reconstructing ρ from {ψ1 · · ·ψJ} involves inverting the above operators (including F−1

λ ), and is demonstrated graphically in Supplementary

Figure S1.
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FIG. 3. (a) A density isosurface of an Au nanocrystal reconstructed

using vwBCDI. Coloring corresponds to near-surface lattice dis-

placements. {111} facets are labeled, and the arrow q111 indicates

the scattering vector direction of the measured Bragg peak. (b) The

lattice displacement within the nanocrystal along the gray plane in

(a). Corresponding images of the same crystal reconstructed from

rocking-curve based BCDI data (c, d). (e) Comparison of lattice dis-

placement line-outs along the dotted lines in (b) and (d). Error met-

rics from vwBCDI and standard rocking curve phase retrieval are

shown in (e).

standard F3D-based HIO and ER were applied to the rocking256

curve data. Both data sets were successfully phased with com-257

parable rates of convergence, and the resulting reconstructions258

are shown in Figure 3. A 3D isosurface of the electron den-259

sity of both reconstructions is featured, showing regions of260

higher lattice displacement especially near the edges and cor-261

ners of {111} facets, as has been observed previously in gold262

nanoparticles prepared by thermal dewetting of films [26]. Di-263

rect comparisons of the images is difficult because the mea-264

sured reciprocal space volumes and sampling of the Bragg265

peak from the energy and rocking scans are inherently dif-266

ferent, leading to expected differences in the pixelation and267

resolution of features in the reconstructions. Nonetheless, the268

lattice displacements traced along equivalent lines of both re-269

constructions agree well (Figure 3(e)). We note that for larger270

crystals, refraction effects can become significant and should271

be accounted for [27].272

The good agreement between the two reconstruction meth-273

ods demonstrates that vwBCDI preserves the strain-sensitive274

3D imaging capability of current rocking-curve-based BCDI275

methods without requiring any sample motion. This capabil-276

ity will greatly simplify certain in-situ strain measurements277

in environments that are difficult to accurately rotate about a278

precise center of rotation or that are otherwise cumbersome.279

The current formalism does not incorporate the energy depen-280

dence of the scattering factor. Thus, vwBCDI scans should281

be performed far away from absorption edges of the elements282

in the sample. However, enabling element-sensitive vwBCDI283

may be feasible with near-edge energy scanning if additional284

resonant scattering effects are incorporated into the phase re-285

trieval algorithm.286
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