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The Borromean 6He nucleus is an exotic system characterized by two halo neutrons orbiting
around a compact 4He (or α) core, in which the binary subsystems are unbound. The simultaneous
reproduction of its small binding energy and extended matter and point-proton radii has been a
challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft
nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supple-
menting the model space with 4He+n+n cluster degrees of freedom largely solves this issue. We
analyze the role played by the α-clustering and many-body correlations, and study the dependence
of the energy spectrum on the resolution scale of the interaction.

PACS numbers: 21.60.De, 25.10.+s, 27.20.+n

Introduction. Achieving a comprehensive and unified
treatment of many-body correlations and clustering in
atomic nuclei constitutes a frontier for contemporary nu-
clear theory. A light exotic nucleus that has been chal-
lenging our understanding of such complex phenomena
based on nucleonic degrees of freedom and high-quality
models of their interactions (i.e., within an ab initio
framework) is Helium-6 (6He). This is a prominent ex-
ample of Borromean quantum ‘halo’, i.e. a weakly-bound
state of three particles (α+n+n) otherwise unbound in
pairs, characterized by “large probability of configura-
tions within classically forbidden regions of space” [1]. In
the last few years, its binding energy [2] and charge ra-
dius [3] have been experimentally determined with high
precision. The 6He ground state (g.s.) is also of great
interest for tests of fundamental interactions and sym-
metries. Precision measurements of its β-decay half life
have recently taken place [4] and efforts are under way to
determine the angular correlation between the emitted
electron and neutrino [5]. To date, traditional ab initio
bound-state calculations can successfully describe the in-
terior of the 6He wave function [6–10], but are unable to
fully account for its three-cluster asymptotic behavior.
At the same time, the only ab initio study of α+n+n dy-
namics naturally explains the asymptotic configurations,
but underbinds the 6He g.s. owing to missing many-body
correlations [11, 12]. As a result, a comprehensive de-
scription of the 6He g.s. properties is still missing.

In this Letter we present a study of the 6He g.s. in
which both six-body correlations and clustering are suc-
cessfully addressed by means of the no-core shell model
with continuum (NCSMC) [13]. This approach, intro-
duced to describe binary processes starting from two-
[14, 15] and later three-body [16–18] Hamiltonians, is
here generalized to the treatment of three-cluster dynam-
ics. We further explore the role of six-body correlations
in the description of the low-lying α+n+n continuum, re-
quired to accurately evaluate the 4He(2n, γ)6He radiative

capture (one of the mechanism by which stars can over-
come the instability of the five- and eight-nucleon systems
and create heavier nuclei [19]) and of the 3H(3H, 2n)4He
reaction contributing to the neutron yield in inertial con-
finement fusion experiments [20, 21].
Approach. In the NCSMC, the A-nucleon wave func-

tion of a system characterized by a core+n+n asymptotic
in the total angular momentum, parity and isospin chan-
nel JπT is written as the generalized cluster expansion

|ΨJπT 〉 =
∑
λ

cJ
πT
λ |AλJπT 〉 (1)

+
∑
ν

∫∫
dx dy x2 y2GJ

πT
ν (x, y) Âν |ΦJ

πT
νxy 〉 ,

where cJ
πT
λ and GJ

πT
ν (x, y) are, respectively, discrete

and continuous variational amplitudes to be determined,
|AλJπT 〉 is the square-integrable (antisymmetric) solu-
tion for the λ-th energy eigenstate of the system obtained
working within the A-body harmonic oscillator (HO) ba-
sis of the no-core shell model (NCSM) [22],

|ΦJ
πT
νxy 〉=

[(
|A− 2 λcJ

πc
c Tc〉 (|n〉 |n〉)(snnTnn)

)(ST )
(2)

× (Y`x(η̂nn)Y`y (η̂c,nn))(L)
](JπT ) δ(x− ηnn)

xηnn

δ(y − ηc,nn)

yηc,nn

are continuous microscopic-cluster states [11] describing
the organization of the nucleons into an (A− 2)-nucleon
core and two neutrons |n〉, and the intercluster antisym-
metrizer Âν enforces the Pauli principle. The core eigen-
states are also computed in the NCSM, with the same HO
frequency ~Ω and consistent number of quanta above the
lowest energy configuration Nmax used for the A-nucleon
system. The states of Eq. (2) are labeled by the quantum
numbers ν = {A−2λcJ

πc
c Tc; snn Tnn S `x `y L}. Further-

more, ~ηc,nn = ηc,nnη̂c,nn and ~ηnn = ηnnη̂nn are coordi-
nates proportional to the separation between the centers
of mass (c.m.’s) of the core and residual two neutrons,
and to the neutrons’ relative position, respectively.
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Similar to the binary-cluster case [15], upon orthogo-
nalization of expansion (1), we obtain the unknown cJ

πT
λ

and GJ
πT
ν (x, y) amplitudes by solving the Schrödinger

equation in the model space spanned by the basis states
|AλJπT 〉 and Aν |ΦJ

πT
νxy 〉. However, given the additional

relative coordinate, in the three-cluster case we first ex-
press the continuous amplitudes in the orthogonalized
expansion (i.e., the relative-motion wave functions) in

terms of the hyperradius ρ =
√
x2 + y2 and hyperangle

α = arctan x
y and expand them in the hyperangular ba-

sis φ
`x`y
K (α) analogously to Ref. [11]. The 6He g.s. energy

and wave function |Ψg.s.〉, as well as the matrix elements
of the α+n+n scattering matrix are found by match-
ing the orthogonalized form of expansion (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix method on La-
grange mesh [15, 23–27]. We obtain convergence of the
hyperangular expansion and R-matrix method using the
same parameters as in Refs. [11, 12]. We then analyze
the hyperradial components of the α+n+n relative mo-
tion and preferred spatial configurations within the g.s.
of 6He. To this end, we perform a projection of |Ψg.s.〉
into the orthogonalized cluster basis (2), i.e.,∑
ν′

∫∫
dx′dy′x′ 2y′ 2N−1/2νν′ (x, y, x′, y′)〈Ψg.s.|Aν |ΦJ

πT
ν′x′y′〉

=
1

ρ5/2

∑
K

ũνK(ρ)φ
`x`y
K (α) , (3)

where Nνν′(x, y, x′, y′) is the overlap between the anti-
symmetrized states (2) [11]. Finally, we obtain the mat-
ter (rm) and point-proton (rpp) root-mean-square (rms)
radii by computing the square root of the expectation
values on the g.s. wave function of the operators

r2m ≡
1

A

A∑
i=1

r2i =
1

A
ρ2 +

A− 2

A
r2(c)m , (4)

and

r2pp ≡
1

Z

A∑
i=1

r2i
(1 + τ

(3)
i )

2
= r2(c)pp +R2(c), (5)

respectively. Here Z is the total number of protons, τ
(3)
i

is the third component of isospin and ri the distance from

the A-nucleon c.m. of the ith nucleon, r
2(c)
m and r

2(c)
pp are

core operators defined analogously to Eqs. (4) and (5), re-

spectively, and R(c) =
√

2
A(A−2)ηc,nn is the distance be-

tween the c.m. of the core and that of the whole system.
The expressions on the far right-hand side of Eqs. (4)
and (5) are used to compute the matrix elements involv-
ing the microscopic-cluster portion of the basis and were
specifically derived for core+n+n partitions. In particu-
lar, the formulation of Eq. (5) is only valid for the present
case of isospin Tc = 0 core. A more detailed account of
the formalism will follow in a separate publication [28].

Results. We start from the chiral N3LO nucleon-
nucleon (NN) interaction of Ref. [29] softened via the
similarity renormalization group (SRG) method [30–32],
which minimizes momentum components above a given
resolution scale Λ, and disregard for the time being three-
nucleon (3N) initial and SRG-induced components of the
nuclear Hamiltonian. This defines a new NN interaction,
unitarily equivalent to the initial potential in the two-
nucleon sector only. In particular we select Λ = 2.0 fm−1.
At this momentum resolution, the net effect of the (here
disregarded) 3N forces tends to be suppressed in nuclei
up to mass number A = 6 leading to binding energies
close to experiment [33], and two- and higher-body SRG
corrections to the 3H and 4He matter radii computed
with bare operators have been shown to be negligible
(less than 1%) [34]. In the interest of showcasing the
vast improvement of the present approach over the use
of expansions based exclusively on α+n+n microscopic-
cluster states, we also perform calculations with the even
softer Λ = 1.5 fm−1 resolution scale adopted in our ear-
lier studies of Refs. [11, 12]. Calculations for Λ = 1.5
and 2.0 fm−1 were carried out using the same ~Ω = 14
and 20 MeV HO frequencies of Refs. [11, 12] and [17],
respectively. All results were obtained including only the
Jπcc Tc = 0+0 g.s. of the α particle and the first four, three
and two square-integrable eigenstates of the six-nucleon
system for the Jπ = 0+, 1± and 2+ channels, respec-
tively. The effect of such truncation of the generalized
cluster expansion (1) becomes negligible as the HO basis
size increases, but can occasionally lead to a delayed on-
set of variational behavior. This can be seen, e.g., in the
results for the 6He g.s. energy, presented in Table I.

Convergence within the NCSMC is achieved within less
than 10 keV for Λ = 1.5 fm−1, in excellent agreement
with the infinite-space extrapolation of the NCSM [11].
Such test, thanks also to accurate extrapolation tech-
niques recently developed for NCSM g.s. energies [35–
39], can be used to establish convergence of the NCSMC

TABLE I. Computed 6He g.s. energies in MeV for the Λ = 1.5
and 2.0 fm−1 interactions as a function of the absolute HO
model space size Ntot = N0 +Nmax, where N0 is the number
of quanta shared by the nucleons in their lowest configura-
tion. For the 4He(g.s.)+n+n calculation of Ref. [11], N0 = 0.
However, for the the p-shell 6He nucleus within the NCSM
and NCSMC, N0 = 2. The last two rows show NCSM ex-
trapolated results, and the experimental value, respectively.

Λ = 1.5 fm−1 Λ = 2.0 fm−1

Ntot Ref. [11] NCSM NCSMC NCSM NCSMC
6 -28.91 -27.71 -30.02 -26.44 -28.64
8 -28.62 -28.95 -29.69 -27.70 -28.81
10 -28.70 -29.45 -29.86 -28.37 -28.97
12 -28.70 -29.66 -29.86 -28.72 -29.17
∞ — -29.84(4) [11] — -29.20(11) [8] —

Exp. -29.268
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FIG. 1. (Color online) Panel (a): Most relevant hyperradial components ũνK(ρ) of the α+n+n relative motion [see Eq.(3)]
within the 6He g.s. after projection of the Λ = 2.0 fm−1 full NCSMC wave function in the largest model space (blue solid lines)
as well as of its NCSM portion (red dashed lines) into the orthogonalized microscopic-cluster basis. Panel (b) and (c): Contour
plots of the probability distribution obtained from the projection of the full NCSMC wave function of panel (a) and its NCSM

component, respectively, as a function of the relative coordinates rnn =
√

2 ηnn and rα,nn =
√

3/4 ηα,nn.

in more uncertain situations. This is the case for the
harder (Λ = 2.0 fm−1) interaction, where the good agree-
ment with the extrapolated value of Ref. [8] is proof
that results in the largest model space are close to con-
vergence. The 4He(g.s.)+n+n degrees of freedom effi-
ciently account for the onset of clustering already in small
model spaces. Conversely, the square-integrable eigen-
states supply many-body correlations that are not ac-
counted for in a microscopic-cluster expansion including
only the g.s. of 4He, such as the one shown in the first
column of the table (note that 6He is unbound in the
analogous calculations for Λ = 2.0 fm−1). As shown in
Fig. 1(a), the 4He(g.s.)+n+n portion of the basis serves
also the important role of providing the correct asymp-
totic behavior and extended configurations of the hyper-
radial motion typical of a Borromean halo such as 6He.

The projection over the orthogonalized microscopic-
cluster basis of Eq. (3) captures 97% of the original
NCSMC solution, confirming the α+n+n picture of the
6He g.s. As shown in Fig. 1(b), similar to numerous pre-
vious studies [8, 11, 23, 40–43] the “di-neutron” configu-
ration (two neutrons about 2 fm apart orbiting the core at
a distance of about 3 fm) prevails over the “cigar” picture
(two neutrons far from each other with the α particle in
between). While these structures are already captured by
the square-integrable portion of the basis [see Fig. 1(c)],
they are more spatially extended in the full calculation.

TABLE II. Summary of the results presented in Fig. 2, with
Λlowk in units of fm−1. See text for further details.

S2n (MeV) rm (fm) rpp (fm)
NCSMC (Nmax = 10) 0.94(5) 2.43(2) 1.88(2)
NCSM [8] (Nmax =∞) 0.95(10) — 1.820(4)
EIHH [7] (Λlowk = 2.0) 0.82(4) 2.33(5) 1.804(9)
Exp. 0.975 2.32(10) 1.938(23)

The rms matter and point-proton radii obtained us-
ing the more ‘realistic’ Λ = 2.0 fm−1 momentum reso-
lution are shown together with the corresponding two-
neutron separation energy (S2n) in Fig. 2 and summa-
rized in Table II. Also shown as shaded bands are the
accurate S2n measurement of Ref. [2], the range of ex-
perimental matter radii spanned by the the values and
associated error bars of Refs. [44–46], and the bounds
for the point-proton radius as evaluated in Ref. [7] from

[7]

[8]

FIG. 2. (Color online) NCSMC (blue solid lines) and NCSM
(red dashed lines) rms matter (triangles) and point-proton
(squares) radii, and two-neutron separation energy (circles),
obtained using the SRG-N3LO NN interaction with Λ = 2.0
fm−1 as a function of the HO basis size. Also shown are
the infinite-basis extrapolations from Ref. [8] and the EIHH
results from Ref. [7] at the resolution scales Λlowk = 1.8, and
2.0 fm−1. The range of experimental values are represented
by horizontal bands (see text for more details).
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FIG. 3. (Color online) Eigenphase shifts for channels 2+

and 1− as a function of the energy relative to the two-
neutron emission threshold Eth(α+n+n) calculated with Λ =
1.5 fm−1 within the microscopic cluster basis (red dot-dashed
lines) and NCSMC (blue solid lines), and Λ = 2.0 fm−1 within
the NCSMC (green dashed lines).

the charge radius reported in Ref. [3]. All three observ-
ables exhibit a considerably weaker dependence on the
size of the HO basis compared to the results obtained
within the NCSM (also shown in the figure as dashed red
lines). An estimate of our uncertainties, based on both
the convergence of the two-neutron emission threshold
Eth(α+n+n) and the influence of 6He square-integrable
states beyond the g.s. is reported in Table II and shown
in Fig. 2 for the largest model space. There, the theoreti-
cal S2n is closest to its empirical value, and the computed
rm and rpp radii are, respectively, at the upper end and
just below the lower bound of their experimental bands.
More interestingly, our point-proton radius is substan-
tially larger than both the extrapolated value of Sääf et
al., which “calls for further investigations” [8], and the
effective interaction hyperspherical harmonics (EIHH) re-
sult of Bacca et al. [7]. This latter calculation, based on
the Vlowk(N3LO) NN interaction, also yields a matter
radius smaller than ours though within the experimental
bounds. The present combination of S2n and rpp values
are more in line with the Green’s function Monte Carlo
results of Ref. [6], based on NN+3N forces constrained
to reproduce the properties of light nuclei including 6He.

With the present approach we are also able to quan-
tify how the polarization of the α core affects the low-
lying continuum of 6He, a question that had been left
unanswered by our previous study [12]. At the level of
the 4He+n+n scattering eigenphase shifts obtained for
the Λ = 1.5 fm−1 momentum resolution, the most sig-
nificant effect is observed for the first Jπ = 2+ reso-
nance, which becomes much sharper (with a width of
Γ = 15 keV) and is shifted to lower energies (with the
new centroid at 0.536 MeV). This behavior, indicative of
a likely influence of the chiral 3N force on this state, can
be seen in Fig. 3, which compares results obtained with
(NCSMC) and without (cluster basis) coupling of 6He
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FIG. 4. (Color online) Spectrum of 6He. Results for Λ = 1.5
fm−1 are shown in the left for both NCSM and NCSMC. The
third set of states corresponds to Λ = 2.0 fm−1 within the
NCSMC and the fourth to the experimental spectrum [47].
See text for further details.

square-integrable eigenstates. The effect in other par-
tial waves is much more moderate. In particular, the 1−

eigenphase shift does not change significantly, excluding
core-polarization effects as the possible origin of a low-
lying dipole mode. A summary of the resonance centroids
and widths (shown as shaded areas) extracted [48, 49]
from the computed Λ = 1.5 and 2.0 fm−1 positive-parity
eigenphase shifts is presented and compared with experi-
ment [47] in Fig. 4. Also shown, for the softer interaction,
are extrapolated [50] energy levels (and their uncertain-
ties) obtained within the NCSM by treating the 6He ex-
cited states as bound states (note that the NCSM does
not yield resonance widths). Clearly, such an approxima-
tion is only justified for the very narrow 2+1 resonance.
The two SRG resolution scales produce a qualitatively
similar picture, with the harder interaction leading to
higher-lying and wider resonances (see also Fig. 3).

Conclusions. We presented a comprehensive study of
many-body correlations and α-clustering in the g.s. and
low-lying energy continuum of 6He. While the inclusion
of 3N forces (currently underway) remains crucial to re-
store the formal unitarity of the adopted SRG transfor-
mation of the Hamiltonian and arrive at an accurate de-
scription of the spectrum as a whole, the present results
demonstrate that rms matter and point-proton radii com-
patible with experiment can be obtained starting from a
soft NN interaction reproducing the 6He small binding
energy. A significant portion of the g.s. energy and the
narrow width of the 2+1 resonance stem from many-body
correlations that, in a microscopic-cluster picture, can
be interpreted as core-excitation effects. In the future
we plan to reexamine the ab initio calculation of the 6He
β-decay half-life, first carried out in Ref. [51], in the con-
text of chiral effective field theory using wave functions
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with proper asymptotic behavior. This work also sets the
stage for the ab initio study of the 4He(2n, γ)6He radia-
tive capture and is a stepping stone in the calculation of
the 3H(3H, 2n)4He fusion.
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Phys. Rev. C 91, 061301 (2015).
[40] I. Brida and F. Nunes, Nucl. Phys. A847, 1 (2010).
[41] V. Kukulin, V. Krasnopolsky, V. Voronchev, and

P. Sazonov, Nucl. Phys. A453, 365 (1986).
[42] M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thomp-

son, and J. Vaagen, Phys. Rep. 231, 151 (1993).
[43] E. Nielsen, D. Fedorov, A. Jensen, and E. Garrido,

Physics Reports 347, 373 (2001).
[44] I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura,

K. Sugimoto, and H. Toki, Phys. Lett. B289, 261 (1992).
[45] G. D. Alkhazov et al., Phys. Rev. Lett. 78, 2313 (1997).
[46] O. Kiselev et al., The European Physical Journal A -

Hadrons and Nuclei 25, 215 (2005).
[47] X. Mougeot, V. Lapoux, W. Mittig, N. Alamanos,

F. Auger, et al., Phys.Lett. B718, 441 (2012).
[48] Centroids ER and widths Γ are obtained, respectively, as

the values of Ekin = E − Eth(α+n+n) for which the first
derivative δ′(Ekin) of the eigenphase shifts is maximal
and Γ=2/δ′(ER).

[49] I. J. Thompson and F. M. Nunes, Nuclear Reactions for
Astrophysics (Cambridge University Press, 2009) p. 301.

[50] Extrapolated values E∞ are obtained from fitting the
Nmax = 6 to 12 energies at ~Ω = 14 MeV with the func-
tion E(Nmax)=E∞+a exp(−bNmax).

[51] R. Schiavilla and R. B. Wiringa, Phys. Rev. C 65, 054302
(2002).

mailto:romeroredond1@llnl.gov
mailto:quaglioni1@llnl.gov
mailto:navratil@triumf.ca
http://dx.doi.org/10.1103/RevModPhys.76.215
http://dx.doi.org/10.1103/PhysRevLett.108.052504
http://dx.doi.org/10.1103/PhysRevLett.93.142501
http://dx.doi.org/10.1103/PhysRevLett.108.122502
http://dx.doi.org/10.1103/PhysRevC.86.034321
http://dx.doi.org/10.1103/PhysRevC.86.034321
http://dx.doi.org/10.1103/PhysRevC.89.011303
http://dx.doi.org/10.1103/PhysRevC.90.034305
http://dx.doi.org/10.1103/PhysRevC.90.034305
http://dx.doi.org/ 10.1103/PhysRevC.88.034320
http://dx.doi.org/10.1103/PhysRevLett.113.032503
http://dx.doi.org/10.1103/PhysRevLett.110.022505
http://dx.doi.org/10.1103/PhysRevLett.110.022505
http://dx.doi.org/10.1103/PhysRevC.87.034326
http://dx.doi.org/10.1103/PhysRevC.87.034326
http://dx.doi.org/10.1103/PhysRevC.90.061601
http://dx.doi.org/10.1103/PhysRevC.90.061601
http://dx.doi.org/10.1103/PhysRevLett.114.212502
http://dx.doi.org/10.1103/PhysRevLett.114.212502
http://dx.doi.org/ 10.1103/PhysRevC.91.021301
http://dx.doi.org/10.1146/annurev.nucl.48.1.175
http://dx.doi.org/10.1146/annurev.nucl.48.1.175
http://dx.doi.org/10.1103/PhysRevLett.109.025003
http://dx.doi.org/10.1103/PhysRevLett.111.052501
http://dx.doi.org/10.1103/PhysRevC.62.054311
http://dx.doi.org/10.1103/PhysRevC.62.054311
http://dx.doi.org/10.1103/PhysRevC.67.044309
http://dx.doi.org/10.1103/PhysRevC.67.044309
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.010
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.010
http://dx.doi.org/10.1103/PhysRevA.65.052710
http://dx.doi.org/10.1103/PhysRevA.65.052710
http://dx.doi.org/10.1002/andp.19945060203
http://dx.doi.org/ 10.1103/PhysRevC.90.011301
http://dx.doi.org/ 10.1103/PhysRevC.86.054002
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/ 10.1103/PhysRevC.87.044326
http://dx.doi.org/10.1103/PhysRevC.89.044301
http://dx.doi.org/10.1103/PhysRevC.89.044301
http://dx.doi.org/10.1103/PhysRevC.91.061301
http://dx.doi.org/10.1016/j.nuclphysa.2010.06.012
http://dx.doi.org/ 10.1016/0370-1573(93)90141-Y
http://dx.doi.org/ http://dx.doi.org/10.1016/S0370-1573(00)00107-1
http://dx.doi.org/ 10.1016/0370-2693(92)91216-V
http://dx.doi.org/10.1103/PhysRevLett.78.2313
http://dx.doi.org/10.1140/epjad/i2005-06-156-3
http://dx.doi.org/10.1140/epjad/i2005-06-156-3
http://dx.doi.org/ 10.1016/j.physletb.2012.10.054
http://dx.doi.org/10.1017/CBO9781139152150
http://dx.doi.org/10.1017/CBO9781139152150
http://dx.doi.org/10.1103/PhysRevC.65.054302
http://dx.doi.org/10.1103/PhysRevC.65.054302

	How many-body correlations and -clustering shape 6He
	Abstract
	Acknowledgments
	References


