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We introduce a minimal generative model for densifying networks in which a new node attaches
to a randomly selected target node and also to each of its neighbors with probability p. The
networks that emerge from this copying mechanism are sparse for p < 1

2
and dense (average degree

increasing with number of nodes N) for p ≥ 1
2
. The behavior in the dense regime is especially

rich; for example, individual networks realizations that are built by copying are disparate and not
self-averaging. Further, there is an infinite sequence of structural anomalies at p = 2

3
, 3

4
, 4

5
, etc.,

where the N dependences of the number of triangles (3-cliques), 4-cliques, undergo phase transitions.
When linking to second neighbors of the target can occur, the probability that the resulting graph
is complete—all nodes are connected—is non-zero as N →∞.

PACS numbers: 89.75.-k, 02.50.Le, 05.50.+q, 75.10.Hk

The investigation of complex networks has blossomed
into a rich discipline, with many theoretical advances
and a myriad of applications to the physical and so-
cial sciences [1–3]. Network science has identified uni-
versal properties that are shared by a wide range of real-
world systems, including small-worldness, heterogeneous
degree distributions, and network densification. The lat-
ter, observed in a variety of social, urban, and informa-
tion networks [4–7], is a fundamental phenomenon where
the number of edges in a network grows superlinearly
with the number of nodes N . However, the vast majority
of network models exclusively focus on sparse networks,
where the average degree is finite as N →∞. The main
purpose of this Letter is to introduce a minimal model for
dense networks and to analytically determine many of its
fascinating structural properties, including: (i) a densifi-
cation transition, (ii) an infinite sequence of transitions
in clique densities, (iii) an anomalous degree distribution
for dense networks, and (iv) a completeness transition
with second-neighbor copying.

Our model is based on the generic mechanism of copy-
ing (see also Refs. [4, 8–12] for related modeling): new
nodes are introduced sequentially and each connects to
a random pre-existing target node, as well as to each the
neighbors of the target (friends of a friend) independently
with probability p (Fig. 1). This mechanism, related to
triadic closure, is known to drive the dynamics of social
networks [13–15], such as Facebook, where people are in-
vited to connect to a friend of a friend (see, e.g., [11, 12]),
but also information networks [4, 11, 16, 17] and biologi-
cal networks, through the concept of duplication [10, 18–
21]. Copying naturally generates highly clustered, small-
world networks [22–26] and has the further advantage
of being a local mechanism [27–29], a feature that al-
lows us to obtain precise results. As we will show, suffi-
cient copying triggers instabilities in the network growth,
leading to the emergence of network densification, and

produces non-trivial structural properties, including an
infinite sequence of phase transitions in the densities of
fixed-size cliques (complete subgraphs), as well as non-
extensivity and lack of self averaging of the degree distri-
bution. Moreover, the simplicity of the mechanism allows
for analytical solution for many network properties.
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FIG. 1: The copying mechanism. A new node (filled circle)
attaches to a random target (open circle) and to each of the
friends of the target (squares) with probability p.

When p = 0, a network built by copying is a ran-
dom recursive tree [30, 31], while for p = 1, a complete
graph arises if the initial graph is also complete. For
p < 1

2 , the network is sparse, while for p ≥ 1
2 , the num-

ber of links grows superlinearly with N and the network
is dense. In the dense regime, the network is highly clus-
tered (Fig. 2) and undergoes an infinite series of struc-
tural transitions at p = 2

3 ,
3
4 ,

4
5 , . . . that signal sudden

changes in the growth laws of the number of 3-cliques
(triangles), 4-cliques (tetrahedra), etc.

Number of Links. We first investigate how copying af-
fects the growth in the number of links. Let LN denote
the number of links in a given realization of a network
of N nodes and let L(N) ≡ 〈LN 〉 denote the number
of links averaged over many realizations. Adding a new
node increases L(N) by 1 + p〈k〉, where 〈k〉 = 2L(N)/N
is the average degree. Thus L(N) grows according to

L(N + 1) = L(N) + 1 + 2p
L(N)

N
. (1)
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FIG. 2: Realizations of the copying model for p = 0.1, 0.4, 0.7, and 1 for N = 100, and a summary of the dense regimes.

The exact solution to this recurrence is [32]

L(N) =
Γ(2p+N)

Γ(N)

N∑
j=2

Γ(j)

Γ(2p+ j)
. (2)

The large-N asysmptotic behavior of this solution

L(N) =


N/(1− 2p) p < 1

2 ,

N lnN p = 1
2 ,

A(p)N2p 1
2 < p ≤ 1,

(3)

with A(p) =
[
(2p−1)Γ(1+2p)

]−1
, illustrates the change

in the N dependence at p = 1
2 .

The standard deviation ΣL ≡
√
〈L2

N 〉 − 〈LN 〉2 ex-
hibits an even richer dependence on N , with transitions
at p = 1

4 and p = 1
2 [32]:

ΣL ∼


√
N p < 1

4 ,√
N lnN p = 1

4 ,

N2p 1
4 < p < 1, p 6= 1

2 ,

N
√

lnN p = 1
2 .

(4)

The salient consequences of (3) and (4) are that L(N)
grows superlinearly with N and is not self averaging for
p > 1

2 . That is, there is a wide diversity between dif-
ferent network realizations starting from the same initial
condition—the first few steps are crucial in shaping the
evolution. Conversely, fluctuations are negligible only in
the sparse phase, where ΣL/L(N) → 0 as N → ∞; for
p < 1

4 , where ΣL scales as
√
N , we further anticipate that

the distribution in the number of links for a network of
N nodes, P (L,N), is asymptotically Gaussian.

Triangles and Larger Cliques. A related set of tran-
sitions occurs in the densities of larger-size cliques. A

k-clique is a complete subgraph of k nodes that are con-
nected by k(k− 1)/2 links. We first investigate the num-
ber of 3-cliques (triangles). There are two mechanisms
that increase the number of triangles as a result of a copy-
ing event—direct and induced linking. In direct linking,
a triangle is created in each copying event that consists
of the new node, the target node, and the neighbor of the
target that receives a ‘copying’ link (Fig. 3). In induced
linking, additional triangles are created whenever copy-
ing creates links to more than one neighbor of the target
that were previously linked.

FIG. 3: Counting triangles. The target node (open circle)
has five neighbors (squares), two of which were previously
joined by ‘clustering’ links (heavy lines). Three copying links
(dashed) create three new triangles by direct linking (one is
hatched for illustration) and one new triangle by induced link-
ing (shaded).

To determine the N -dependence of average number of
triangles T (N), suppose that the target node has degree
k and that its neighbors are connected via c ‘clustering’
links (Fig. 3). If a copying links are made, the increase
in the number of triangles, ∆T , is

∆T = a+
a(a− 1)

2

c

k(k − 1)/2
. (5)

The first term on the right accounts for direct linking and
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the second for induced linking. For the latter, we need
to count how many of a(a− 1)/2 possible links between
a neighbors of the target, which also connect to the new
node, are actually present. Averaging (5) with respect
to the binomial distribution for a, we obtain, after an
elementary calculation,

∆T = pk + p2c. (6)

The term p2c arises because two connected neighbors of
the target also connect to the new node with probability
p2, since linking to each node occurs independently.

We now express the average number of clustering links
〈c〉 in terms of the number of triangles T (N). To this
end, we note that c equals the number of triangles that
contain the target node, 〈c〉 = 3T (N)/N . Using these
relations, the average number of triangles increases by
∆T (N) = 3p2T (N)/N + 2pL(N)/N with each node ad-
dition. While this recursion can be solved exactly [32],
the detailed solution is cumbersome and not illuminat-
ing. It is simpler to specialize to the N � 1 limit where
the above recursion reduces to the rate equation

dT (N)

dN
= 3p2T (N)

N
+ 2p

L(N)

N
, (7)

whose solution is

T (N) =



2p
(1−2p) (1−3p2) N p < 1

2 ,

4N lnN p = 1
2 ,

A(p)
1−3p/2 N

2p 1
2 < p < 2

3 ,
4

Γ(4/3) N
4/3 lnN p = 2

3 ,

B(p)N3p2 2
3 < p ≤ 1,

(8)

with A(p) given in (3) and B(p) also calculable [32] by
solving the discrete recursion for T (N).

Thus the average number of triangles T (N) undergoes
two transitions, with the second at p = 2

3 , where T (N)
grows superlinearly in L(N) (Fig. 2). Moreover, the den-
sity of triangles converges to a non-vanishing value even
in the sparse regime of p < 1

2 , which mirrors the high den-
sity of triangles found in many complex networks [22–26].

The reasoning presented above can be generalized to
4-cliques (quartets) and we find that their number grows
according to the rate equation [32]

dK4(N)

dN
= 3p2T (N)

N
+ 4p3K4(N)

N
, (9)

from which the average number of quartets grows as
(with all prefactors omitted)

K4(N) ∼


N 0 < p < 1

2 ,

N2p 1
2 < p < 2

3 ,

N3p2 2
3 < p < 3

4 ,

N4p3 3
4 < p ≤ 1.

At the transition points p = 1
2 , 2

3 , and 3
4 , the algebraic

factor is multiplied by lnN . Generally, the average num-
ber Km(N) of m-cliques evolves according to

dKm(N)

dN
= (m− 1)pm−2Km−1(N)

N
+mpm−1Km(N)

N
.

(10)
Solving (10) recursively gives

Km(N) ∼ N (j+1)pj j
j+1 < p < j+1

j+2 , (11)

with j = 0, 1, 2, . . . ,m − 1. Thus the N -dependence of
the average number of cliques of size m undergoes m− 1
transitions at p = 1− 1

n with n = 2, . . . ,m.

Degree Distribution. Let Nk be the number of nodes
of degree k. Following standard reasoning [28, 33], the
degree distribution evolves according to

dNk
dN

=
Nk−1−Nk

N
+ p

(k−1)Nk−1−kNk
N

+mk. (12a)

The first term on the right is the contribution due to
attachment to the target node, the second term accounts
for attachments to the neighbors of the target node, and
the third term

mk ≡
∑
s≥k−1

ns

(
s

k − 1

)
pk−1(1− p)s−k+1 (12b)

is the probability that the new node acquires a degree k
because it attaches to a target of degree s and to k − 1
neighbors of this target. Here ns = Ns/N denotes the
fraction of nodes of degree s.

When the network is sparse and large, we assume that
the fractions nk do not depend on N to recast (12) to

[2 + p(k+1)]nk+1 = [1 + pk]nk +
∑
s≥k

ns

(
s

k

)
pk(1−p)s−k.

(13)
This equation is not a recurrence, but it is still possible to
extract the asymptotic behavior of nk. First, we observe
that for large k, the summand on the right is sharply
peaked around s ≈ k/p and thus reduces to [20, 33]

nk/p
∑
s≥k

(
s

k

)
pk(1− p)s−k = p−1nk/p ,

where we used a binomial identity to compute the sum
itself. Substituting this into Eq. (13) and assuming that
nk decays slower than exponentially so that differences
may be replaced by derivatives, we obtain the non-local
equation for the degree distribution

d

dk
[1 + pk]nk = p−1 nk/p − nk . (14)

The algebraic form nk ∼ k−γ solves this equation and
also gives the transcendental relation for the exponent,

γ = 1 + p−1 − pγ−2 , (15)
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FIG. 4: Simulations of 1010/N realizations for the degree dis-
tributions nk for p = 0.75 (dense regime) and various N .

which admits two solutions. One, γ = 1, is unphysical
because the corresponding degree distribution is not nor-
malizable. The other applies when 0 ≤ p < 1

2 , where
γ = γ(p) decreases monotonically with p, with γ(0) =∞
and γ( 1

2 ) = 2. Because γ > 2 for 0 ≤ p < 1
2 the average

degree 〈k〉 =
∑
k≥1 knk is finite so that the network is

indeed sparse for 0 ≤ p < 1
2 .

In the dense regime, the scaling ansatz nk = Nk/N
fails (see Fig. 4) and many features of the degree distri-
bution become anomalous. For example, the distribution
does not self average, nodes of small finite degree are ab-
sent in sufficiently large networks, and the distribution
appears to slowly converge to a form that is visually close
to, but distinct from, a log-normal as N → ∞ (Fig. 4).
The resolution of the degree distribution in this regime
represents an intriguing challenge.

Network Completeness. Finally, suppose that a new
node connects to the neighbors of the target with prob-
ability p and to the second neighbors of the target with
probability q. Such a mechanism naturally arises in social
media, where connections to friends of a friend can extend
to higher-order acquaintances. The unexpected feature
of second-order linking is that the network is complete
with non-zero probability.

Let C(N) denote the probability that a network of N
nodes always remains complete for connection probabil-
ities p and q. This completeness probability is

C(N) =

N−1∏
r=1

r−1∑
k=0

B(r, k, p)
(
1− (1− q)k

)r−k−1
, (16)

where B(r, k, p) =
(
r−1
k

)
pk(1 − p)r−k−1 is the binomial

probability that copying leads to k links to the neighbors
of the target. The second factor is the probability that
all of the remaining r− k− 1 neighbors of the target are
connected by second-order links.

Asymptotic analysis and numerical evaluation of (16)
show that C(N) indeed converges to a non-zero, albeit
extremely small, value [32]. A more relevant criterion is
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FIG. 5: N dependence of the number of links, with three
realizations for each value of p, for second-neighbor copying
with q = p2.

not defect-free completeness, but whether the number of
links eventually scales as N2/2, as in the complete graph.
Simulations show that for representative values of p and
q, L(N) initially grows linearly with N but then crosses
over to growing as N2/2 (Fig. 5). Thus second-order
copying generically leads to networks that are effectively
complete—eventually each individual knows almost ev-
erybody. Moreover, Fig. 5 illustrates that individual net-
work realizations are macroscopically disparate. This in-
triguing feature also arises in empirical networks and re-
lated models [34–36], and intellectually originates with
the classic Pólya urn model [37–39].

To summarize, we introduced a simple generative
model for network densification based on the copying
mechanism that leads to rich structural properties. A
dense network arises for copying probability p ≥ 1

2 . This
regime further partitions into disjoint windows where the
densities of k-cliques each have distinct scaling prop-
erties. Different network realizations starting from the
same initial state are extremely diverse and all features
of the resulting degree distribution are unconventional.
When second-neighbor connections are made, the net-
work asymptotically becomes complete. These theoret-
ical findings provide a simple mechanism for the emer-
gence of network densification in real-world networks,
and calls for future empirical analyses of the scaling of
elemental network motifs with network size.
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[39] H. M. Mahmoud, Pólya Urn Models (CRC Press, Boca

Raton FL, 2009).


