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The equivalent behavior among analogous block copolymer systems involving chemically distinct
molecules or mathematically different models has long hinted at an underlying universality, but
only recently has it been rigorously demonstrated by matching results from different simulations.
The profound implication of universality is that simple coarse-grained models can be calibrated
so as to provide quantitatively accurate predictions to experiment. Here, we provide the first
compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt
using a previously calibrated lattice model. The simulation successfully predicts the peak in the
disordered-state structure function, the position of the order-disorder transition and the latent heat
of the transition in excellent quantitative agreement with experiment. This could mark a new era
of precision in the field of block copolymer research.

Block copolymers comprise a diverse family of self-
assembling structured polymers with an ever-growing
range of applications [1–5]. The testing ground for our
understanding of their behavior is the simple linear AB
diblock architecture, consisting of NA A-type segments
of statistical length aA joined to NB B-type segments
of statistical length aB (segments are defined to have a
common volume of ρ−10 ). Most of the theoretical work on
these molecules is based on the standard Gaussian-chain
model [6], where the incompatibility of the A and B seg-
ments is controlled by a phenomenological Flory-Huggins
interaction parameter, χ. In mean-field theory, the ten-
dency for the A and B blocks to segregate into ordered
morphologies is controlled by the product, χN , and the
geometry of the morphology is controlled by the compo-
sition, fA ≡ NA/N , where N ≡ NA + NB. The ratio of
the segment lengths, aA/aB, has a relatively minor effect
on the behavior.

Fredrickson and Helfand (FH) [7] long ago predicted
that the corrections to mean-field theory are controlled
by the invariant polymerization index N̄ = a6ρ20N , where
a = [fAa

2
A+(1−fA)a2B]1/2 is the average segment length.

The implication is that high molecular-weight diblocks
exhibit universal behavior when expressed in terms of
χN , fA, aA/aB and N̄ . In particular, the FH theory
predicts that symmetric diblocks (i.e., fA = 0.5 and
aA = aB) transform from a disordered phase to a lamel-
lar morphology at (χN)ODT = 10.495 + 41.0N̄−1/3. The
relevant system parameters all have clear unambiguous
definitions, apart from χ. Common practice is to approx-
imate the interaction parameter by

χ(T ) =
A

T
+B , (1)

where the fitting parameters, A and B, are adjusted so
that the experimental order-disorder transition (ODT)
or structure function, S(q), from small-angle scattering
matches the predictions from FH [8]. When expressed in
terms of the relevant parameters, experiments on chemi-
cally different diblock copolymers do indeed appear rea-

sonably universal in that their phase diagrams are all
qualitatively similar [9]. The same is true of simula-
tions involving different models [10–14]. However, no one
has seriously claimed that the universality among exper-
iments and simulations is quantitatively precise, that is
until recently.

Morse and coworkers have, in fact, suggested that
the universality becomes mathematically exact for suf-
ficiently large molecules. Focusing on the symmetric di-
block, they have gone onto provide compelling evidence
for this profound hypothesis. Their first major advance
was a rigorous renormalized one-loop (ROL) calculation
for S(q) [15], which confirmed the long-held belief that
the N̄ → ∞ limit corresponds to mean-field theory.
Shortly after, they accurately matched S(q) from dif-
ferent simulation models, supporting the notion of uni-
versality [16]. Their most recent accomplishment was a
method of defining χ by matching the peak of the struc-
ture function, S(q∗), to that of ROL [17]. With this def-
inition, they successfully collapsed the ODTs from five
different simulation models onto a single master curve
given by the empirical relation,

(χN)ODT = 10.495 + 41.0N̄−1/3 + 123.0N̄−0.56 . (2)

It is a testament to universality that this was accom-
plished with a wide selection of models including one
involving hard-core interactions between the monomers,
several more coarse-grained models with soft interactions
as well as the simple lattice model that we will be us-
ing in the current study. To date, the universality has
been demonstrated for a range of other quantities: the
free energy, the latent heat of the transition, and the
period, composition profile and compressibility of the or-
dered lamellar phase [18].

Our aim is to demonstrate the true significance of uni-
versality, which is that experimental results can be ac-
curately predicted using simple coarse-grained models.
Gillard et al. [19] recently attempted such a demon-
stration, but with limited success. They focused on
a polyisoprene-polylactide (PI-PLA) diblock copolymer
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with an ODT of TODT = 96 ± 1◦C. The molecule was
of composition fPLA = 0.51 and polymerization N = 39
(based on ρ−10 = 118Å3). The literature values for its
segment lengths are aPI = 6.1Å and aPLA = 7.0Å, but
Gillard et al. had to scale them up to aPI = 7.2Å and
aPLA = 8.3Å in order to fit the peak heights, S(q∗), and
peak positions, q∗, of the experimental scattering pat-
terns to ROL, which in turn increased N̄ from 231 to 611.
The resulting fit gave A = 381 and B = −0.48 for the
coefficients of χ(T ) implying that (χN)ODT = 21.8±0.1,
which is about 15% higher than the 18.7 predicted by
Eq. (2). The simulations also predicted the latent heat
of the transition to be (∆H)ODT = 0.36 J/g, which is
40% higher than the measured value of 0.26 ± 0.02 J/g
[20].

Although the comparison is reasonable, it is not at the
level one would expect if the universality is actually ex-
act. It is also difficult to justify the ∼20% increase in the
segment lengths. The authors noted and later demon-
strated [21] that polydispersity could be a contributing
factor to the disagreement, given that the experimental
molecules had a polydispersity index of Ð = 1.10, while
Eq. (2) and the ROL used to calibrate χ(T ) both as-
sume monodisperse molecules. It is indeed well under-
stood from mean-field theory [22–24] and Monte Carlo
simulations [25] that polydispersity causes a significant
increase in domain size and thus shifts the peak in S(q)
to lower q (see Supplemental Material).

Here, we account for the effects of polydispersity by
performing simulations on polydisperse molecules using
the exact same lattice model as in Ref. [17]. The
simulations are done in the canonical ensemble with a
fixed number of polymers, n, each modeled as a se-
quence of beads (or monomers) connected by bonds of
length b. The numbers of monomers in the γ blocks
of a molecule (γ = A and B) are given by independent
Schultz-Zimm distributions [26, 27] with number-average
polymerizations of (Nγ)n and polydispersity indexes of
Ðγ ≡ (Nγ)w/(Nγ)n (see Supplemental Material). For
polydisperse polymers, we define N ≡ (NA)n + (NB)n
and fA ≡ (NA)n/N . To simplify the simulation, the
monomers are restricted to a periodic fcc lattice with a
maximum of one monomer per lattice site and bonded
monomers occupying nearest-neighbor sites. Note that
the nearest-neighbor spacing is set to b = 21/6 = 1.122,
such that the volume of the system, V , equals the total
number of lattice sites. To allow room for the polymers
to move, the lattice is only filled to a monomer density
of ρ0 ≡ nN/V = 0.8. Molecular interactions are lim-
ited to neighboring A and B monomers with an interac-
tion strength of εAB. The simulations are performed by
applying the standard Metropolis algorithm using three
types of Monte Carlo moves, slithering snake, chain re-
versal and crankshaft, with relative frequencies of 7:1:2
(see Ref. [28] for further details).

Our model has already been fully calibrated in Ref.

[17]. From that, we know that its statistical segment
length is given by a = 1.233b = 1.384, which implies
N̄ = 4.506N . Furthermore, the previous study showed
that the interaction parameter is well approximated by

χ(α) =
z∞α+ c1α

2

1 + c2α
, (3)

where α ≡ εAB/kBT and z∞ = 4.897 is the average num-
ber of intermolecular contacts a monomer experiences in
the limit α = 0 and N → ∞. The fitting parameters,
c1 = 88.5 and c2 = 8.30, were obtained in Ref. [17] by
matching curves of S(q∗) versus χN from monodisperse
simulations to ROL across the entire disordered phase
for seven different chain lengths ranging from N = 20
to 180. For the current simulations, we represent the
PI-PLA diblock by setting (NA)n = (NB)n = 25 and
ÐA = ÐB = 1.2, which gives fA = 0.5, N̄ = 225 and
Ð = 1.1 [29]. All our simulations are performed in a
cubic simulation box of volume V = 171500, containing
n = 2744 molecules.

In order to calibrate the experimental interaction pa-
rameter, χ(T ), we first need to simulate the disordered-
state structure function,

S(q) =
1

4V

〈∣∣∣∣∣∣
V∑
j=1

σj exp(iq · rj)

∣∣∣∣∣∣
2〉

, (4)

where angle brackets denote ensemble average, rj is the
position of the j’th lattice site and σj = 1, 0 or −1 if
the site is occupied by an A-monomer, a vacancy or a
B-monomer, respectively. Results are plotted in Fig. 1
for several different interaction strengths in the disor-
dered phase. To illustrate the effect of polydispersity,
S(q) is simulated for both monodisperse and polydisperse
diblocks. Because of the finite size of our simulation box,
S(q) is only defined for a discrete set of wavevectors, q.
To accurately extract the peak position, q∗, and peak
height, S(q∗), we fit our simulation data to the RPA
structure function [23–25] (see Supplemental Material).

The peak heights, S(q∗), for monodisperse (squares)
and polydisperse (circles) diblocks are plotted in Fig. 2
as a function of χN using Eq. (3). Because our model is
already calibrated, the monodisperse results match the
ROL prediction, which Gillard et al. [19] used to deter-
mine χ(T ) for the experimental system. Here, we instead
fit the experimental results (crosses) to our polydisperse
simulation, which gives A = 534 and B = −0.82. Poly-
dispersity clearly has a sizable effect on S(q∗), and thus
our analysis provides a far more accurate estimation of
χ(T ). With our improved calibration, the experimental
ODT now maps to (χN)ODT = 24.5± 0.2.

To check the consistency of our simulations with the
experiment, Fig. 3 compares the peak position, q∗, of the
structure function. For the experiment, the peak is scaled
with respect to the average segment length, a = 6.6Å, ob-
tained from the literature values of aPI and aPLA. It is
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FIG. 1. Disordered-state structure function, S(q), calculated
for (a) monodisperse and (b) polydisperse melts at different
values of α = εAB/kBT . The solid curves are fits using the
RPA structure function.

χN

12 16 20 24

ρ
0
N

/S
(q

*)

0.0

0.6

1.2

1.8

2.4

monodisperse simulation

polydisperse simulation

experiment

FIG. 2. Peak in the disordered-state structure function,
S(q∗), from simulations of monodisperse (squares) and poly-
disperse (circles) diblock copolymers compared to that of the
experiment (crosses). Experimental results are plotted using
A = 534 and B = −0.82 for χ(T ).

clear that the experimental results are completely consis-
tent with the polydisperse simulation (circles), whereas
the results for the monodisperse simulation (squares) are
16-22% larger. This is the approximate factor by which
Gillard et al. had to increase the literature value of a,
leading them to assume N̄ = 611 instead of 231. Evi-
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FIG. 3. Peak position, q∗, of the disordered-state structure
function, S(q), from simulations of monodisperse (squares)
and polydisperse (circles) diblock copolymers compared to
that of the experiment (crosses). Experimental results are
plotted using a = 6.6Å.
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FIG. 4. Average number of A-B contacts, 〈nAB〉, as a func-
tion of the interaction parameter, χ(α), from parallel tem-
pering runs initialized with disordered (circles) and lamellar
(squares) configurations shown by the insets. The arrows de-
note the experimental ODT and the prediction from Eq. (2)
for monodisperse polymers.

dently, the factor was simply compensating for the fact
that the ROL prediction used in their analysis was spe-
cific to monodisperse polymers.

Equation (2) predicts (χN)ODT = 23.0 for N̄ = 231,
but this again assumes monodisperse polymers. To ac-
count for polydispersity, we locate the ODT by simula-
tion. This is done by evaluating the average number of
A-B contacts, 〈nAB〉, as a function of χN using parallel
tempering [13]. To gauge the level of metastability, Fig.
4 plots results from two separate simulations. The first
(circles) initialized the system with a configuration equi-
librated in the disordered phase. At the higher values
of χN , the system spontaneously orders into (300) and
(221) lamellar phases, resulting in a discontinuous reduc-
tion in 〈nAB〉. The principle wavevectors of the (300)
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and (221) orientations have the same magnitude, which
as expected matches the peak in S(q) at the ODT. Our
second simulation (squares) was initialized from one of
the (300) configurations; another simulation (not shown)
initialized with a (221) configuration gave equivalent re-
sults. Comparing the two simulations in Fig. 4 reveals
a narrow metastability interval, where the lifetimes of
the disordered and ordered phases exceed our simulation
time. From this, we conclude that (χN)ODT = 24.8±0.3,
which nicely overlaps the experimental result, 24.5± 0.2.
Incidentally, Arora et al. [30] have shown that the ac-
tual ODT from simulation tends to be at the low-χN
end of the metastability interval, which agrees precisely
with the experimental ODT.

The jump in the number of A-B contacts, ∆ 〈nAB〉, in
Fig. 4 at the ODT is related to the latent heat of the
transition by [19]

(∆H)ODT =
∆ 〈nAB〉

n
× RA

χ′(αODT)Mn
, (5)

where R is the ideal gas constant andMn = 2750 g/mol is
the number-average molar mass of the diblock copolymer.
Inserting ∆ 〈nAB〉 /n = 1.44 from our simulation gives
(∆H)ODT = 0.277 J/g, which agrees with the experiment
to within the reported uncertainty [20].

There are several sources of inaccuracy in our simu-
lation of the PI-PLA diblock copolymer melt. For in-
stance, the limitations of the lattice model prevent us
from accounting for the conformational asymmetry (i.e.,
aPLA/aPI = 1.15). Nevertheless, this asymmetry has lit-
tle effect on S(q) and the ODT in mean-field theory (see
Supplemental Material), and this presumably remains
the same when fluctuations are included. There is also
the issue that we had to assume ÐA = ÐB, since the
experiment only measured the overall polydispersity

Ð = f2A(ÐA − 1) + (1− fA)2(ÐB − 1) + 1 . (6)

Likewise, mean-field theory predicts that changing the
balance of polydispersity among the two blocks has little
effect on S(q) (see Supplemental Material). Of course,
the actual molecular-weight distribution will differ some-
what from the Schultz-Zimm distribution, but we know
that the shape of the distribution has a negligible effect
when Ð is small [24, 31]. Thus, the inaccuracies in our
simulation due to conformational asymmetry and the un-
known details of the polydispersity distribution should be
relatively small.

The present agreement between experiment and simu-
lation cements the compelling evidence for the universal-
ity hypothesis previously obtained by matching results
from different simulation models [17, 18]. The signifi-
cance of this universality cannot be overstated. Without
universality, a detailed microscopic model would be re-
quired to obtain quantitatively accurate predictions, but
with the universality, even our simple lattice model is suf-
ficient. One just needs to determine the relevant system

parameters (e.g., χ, N , f , aA, aB, ÐA and ÐB). Apart
from χ, all the parameters are well defined for both ex-
periment and simulation.

In principle, the particular experiment and simulation
of our study can be matched without referring to χ. We
could simply fit the experiment to our model by matching
S(q∗) versus T , assuming a nonlinear functional form for
α(T ) with several fitting parameters. However, the uni-
versality applies to all systems and so it is best to choose
a more general reference, the Flory-Huggins χ parameter.
To do this, we should fit experiments and simulations to
the most accurate theoretical prediction for the standard
Gaussian-chain model, and at the moment this is un-
doubtedly the ROL prediction for S(q), which becomes
exact as N̄ →∞.

Naturally, the universality will become inaccurate as
N̄ decreases. Nevertheless, our demonstration worked
for a remarkably small value of N̄ = 231, as was the
case in Ref. [17] where the ODTs of the different simu-
lations were matched down to N̄ ≈ 200. This begs the
question of just how far does the universality extend. It
will most certainly depend upon the details of the spe-
cific system. For instance, the universality is certain to
breakdown once the polymers are short relative to their
persistence length or once the range of the interactions is
no longer small relative to the size of the molecules. We
will have to wait for future studies to see just how widely
applicable the universality is, but all indications are that
it will be valid for most experimental systems.

An important result from our study is the accurate
prediction of χ(T ) for PI-PLA interactions, which gives
χ = 0.627 at TODT = 96◦C as compared to the previ-
ous estimations of 0.227 [32] and 0.552 [19]. Although
our prediction will be affected by statistical inaccuracy
in the simulation of S(q), this is well controlled and rel-
atively minor. A more significant source of inaccuracy
is the experimental measurement of S(q), given the in-
volved process required to obtain absolute scattering in-
tensities [19]. However, the largest source is likely from
the characterization of the PI-PLA diblock copolymer,
in particular the 5% uncertainty in N = 39 [19]. Even
if we can determine values of χN accurately, any uncer-
tainty in N will necessarily limit the accuracy of χ(T ) by
a similar degree. Still, our estimate of χ(T ) is undoubt-
edly the most accurate to date performed for any pair
of chemical species. The improved method of defining
χ(T ) demonstrated in our study coupled with precision
experiments and synthesis will hopefully lead to a new
level of accuracy in determining χ(T ) for other chemical
pairs. With the added precision, researchers will be well
equipped to investigate subtle effects in block copolymer
materials using a combination of theory, simulation and
experiment.

In conclusion, we have shown that the accurate univer-
sality recently demonstrated among different simulation
models for diblock copolymer melts [17, 18] also extends
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to experiments. By matching the peak in the experi-
mental structure function, S(q∗), of a PI-PLA diblock
copolymer melt [19, 20] with that of a calibrated simu-
lation model [17], we provide what is undoubtedly the
most accurate estimation of χ(T ) for a pair of chemical
species (i.e., PI and PLA). This allowed us to directly
compare the ODT of the experiment with a Monte Carlo
simulation in terms of χN . The position of the ODT
as well as the latent heat of the transition quantitatively
agree to within the small experimental uncertainties and
statistical inaccuracies. This unprecedented agreement
is likely to usher in a new era of precision between ex-
periment, simulation and theory. The key to achieving it
was accounting for the modest polydispersity in the ex-
perimental system (i.e., Ð = 1.10), emphasizing that re-
searchers may have to start considering effects that have
gone largely ignored in the past.

We are grateful to Dave Morse, Tim Gillard and
Frank Bates for valuable discussions and for provid-
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funded by NSF under the Center for Sustainable Poly-
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