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We predict that a temperature gradient can induce a magnon-mediated spin Hall response in
an antiferromagnet with non-trivial magnon Berry curvature. We develop a linear response theory
which gives a general condition for a Hall current to be well defined, even when the thermal Hall
response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet
and discuss a role of magnon edge states in a finite geometry.

Understanding spin transport in nanostructures is a long-
standing problem in the field of spintronics [1–3]. The
discovery of the spin Hall effect [4–10] has been extremely
important as it has led to many important developments
in spintronics [11], such as the quantum spin Hall effect
[12, 13], the spin-orbit torque [14–16], and the spin See-
beck effect [17–19]. In the instrinsic spin Hall effect, the
time reversal symmetry prohibits the transverse charge
current but allows the transverse spin current originat-
ing from the non-trivial Berry curvature of electron bands
[7, 8]. The quantization of the intrinsic spin Hall effect
can be characterized by the topological Chern number
and is accompanied by the existence of topologically pro-
tected edges in the finite geometry [20]. On the other
hand the quantum spin Hall effect can be characterized
by the Z2 topological invariant [12, 13].

The thermal Hall effect carried by magnons has been
experimentally observed in collinear ferromagnets such
as Lu2V2O7, Ho2V2O7, and In2Mn2O7 with pyrochlore
structure [21, 22]. It has been understood that the
Dzyaloshinskii-Moriya interaction (DMI) leads to the
Berry curvature of magnon bands and to the transverse
with respect to the external temperature gradient energy
current [23–26]. The same effect has also been observed
in kagome ferromagnet Cu(1−3,bdc) [27]. The existence
of magnon edge states and tunable topology of magnon
bands have been discussed theoretically [24, 25, 28–31].
The spin Nernst effect (SNE) has been theoretically stud-
ied in Ref. [32] for a kagome lattice ferromagnet. Topo-
logical properties of honeycomb lattice ferromagnet were
addressed in Refs. [33–35].

It has been recently realized that antiferromagnets are
promising materials for spintronics applications [36]. In
Refs. [37, 38] the spin Seebeck effect has been studied
in antiferromagnets. In Ref. [39] it has been shown that
the Berry curvature can result in non-zero thermal Hall
effect carried by magnons in magnets with dipolar inter-
action and in antiferromagnets. However, SNE in anti-
ferromagnets has not been addressed as all of the studies
of anomalous magnon-mediated spin transport in mag-
netic materials have so far been done in ferromagnetic
systems.

In this paper, we study SNE in antiferromagnets with
Neel order. We first derive a general operator that has

a well defined current in a general antiferromagnet. We
then develop a linear response theory for such a current
using the Luttinger approach of the gravitational scalar
potential [40, 41]. It is shown that the response is driven
by a modified Berry curvature of magnon bands. We
then apply our findings to antiferromagnets with Neel
order where a well defined current corresponds to the
spin density. Various realizations of antiferromagnets
with honeycomb arrangement of magnetic atoms have
been suggested recently [42–46]. We consider a single-
and bi-layer honeycomb antiferromagnets with antiferro-
magnetic interlayer coupling where the nearest neighbor
exchange interactions and the second nearest neighbor
DMI are present (see Fig. 1). We show that both models
possess the magnon edge states in the finite geometry and
discuss their role for SNE. For a single layer, we observe
an interplay between the Berry curvature due to the lat-
tice topology and DMI and find that the Berry curvature
is not of the monopole type, contrary to a ferromagnet on
a honeycomb lattice [34, 35]. We also find that SNE can
be present in antiferromagnets that are invariant under
(i) a global time reversal symmetry (e.g. Fig. 1, right)
or under (ii) a combined operation of time reversal and
inversion symmetries (e.g. Fig. 1, left) which prohibits
the thermal Hall response derived in [39].
Current in antiferromagnet. Here we assume a general
model of antiferromagnet insulator with a magnetic unit
cell having N sites. The Hamiltonian of such a sys-
tem is of Heisenberg type with exchange interactions,
DMI, anisotropies and others. Assuming that we know
the order of the system, we study the magnon excita-
tions around that order. The Holstein-Primakoff trans-
formation from spins to boson operators can be em-
ployed to study the magnons (see [47] for example).

In this way, the boson operators νj(r) and ν†j (r), with
j ∈ (1, N), correspond to jth element of the magnetic
unit cell. The operators satisfy commutation relation-
ship [νi(r), ν†j (r′)] = δijδrr′ . We then proceed to write a
general form of a Hamiltonian describing the magnons,

H0 =
1

2

∫
drΨ†(r)ĤΨ(r). (1)

Since this Hamiltonian describes magnons of an anti-
ferromagnet, it will necessary contain pairing terms of
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boson operators. One must then extend the space of
the Hamiltonian, such that the spinor Ψ(r) is written as

Ψ(r) = [ν1(r), ..., νN (r), ν†1(r), ..., ν†N (r)]T.
The Hamiltonian in k−space can be diagonalized with

a help of a paraunitry matrix Tk, such that

T †kĤkTk = εk =

[
Ek 0
0 E−k

]
, (2)

where Ek is a N ×N diagonal matrix of eigenvalues. Pa-
raunitarity of the matrix Tk means that it has to satisfy
a condition T †kσ3Tk = σ3.

We will be interested in responses of the system to
external temperature gradient. To treat the tempera-
ture gradient we adopt the Luttinger model [40] and add
gravitational potentials to the Hamiltonian as

H =
1

2

∫
drΨ̃†(r)ĤΨ̃(r), (3)

where Ψ̃(r) =
(

1 + r∇χ
2

)
Ψ(r) with ∇χ being the tem-

perature gradient with χ(r) = −T (r)/T .
Let us now introduce an arbitrary operator Ô acting

in the Hilbert space of the studied system. Density of
such an operator is O(r) = 1

2Ψ†(r)ÔΨ(r). Time evolu-
tion of the density is derived through a commutator with
total Hamiltonian as, see Supplemental Material (SM)
for details, follows

∂O(r)

∂t
= i[H,O(r)]

= −1

2
∇Ψ̃†(r)

(
v̂σ3Ô + Ôσ3v̂

)
Ψ̃(r)

− i1
2

Ψ̃†(r)
(
Ôσ3Ĥ − Ĥσ3Ô

)
Ψ̃(r), (4)

where v̂ = i[Ĥ, r] is the velocity operator, and σ3 is the
third Pauli matrix operating in the extended space of
the Hamiltonian (1). In deriving we assumed that the
operator Ô commutes with the position operator. From
(4) we observe that for the current of an operator Ô to
be well defined, a

Ôσ3Ĥ − Ĥσ3Ô = 0 (5)

condition must be satisfied by the operator Ô. Other-
wise the quantity associated with the density O(r) will
not be conserved in our system. Let us assume we have
found such an operator that satisfies the condition (5),
the current associated with this operator is then defined
as

jO(r) = Ψ̃†(r)Ôσ3v̂Ψ̃(r). (6)

Let us now calculate the response of the Ô−operator
current to the temperature gradient. We will be work-
ing with the macroscopic currents, defined as JO =
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FIG. 1. (Color online) Left: Magnon spectrum of a single
layer antiferromagnet with DMI D = 0.1J (black arrows cor-
respond to ν sign convention of DMI), with schematics of
the lattice and order in z−direction in the bottom. Right:
Magnon spectrum of antiferromagnet on a bilayer honeycomb
lattice. Parameters are chosen to be J ′ = J and D = 0.1J .
In both cases the distribution of the Berry curvature over the
Brillouin zone is plotted by the color distribution on top of
the spectrum for one of the degenerate subbands.

1
V

∫
drjO(r), where V is volume of the system. Note

that the current consists of unperturbed part J
[0]
O =

1
V

∫
drΨ†(r)Ôσ3vΨ(r) and a perturbed by a temperature

gradient J
[1]
O = 1

2V

∫
drΨ†(r)Ôσ3 (rβv̂ + v̂rβ) Ψ(r)∇βχ

part. Both of them must be used to calculate linear re-
sponse to the temperature gradient. The total current
is

JO =
〈
J

[0]
O

〉
ne

+
〈
J

[1]
O

〉
eq
. (7)

The first term is evaluated with respect to nonequilib-
rium states and can be conveniently captured by the
Kubo linear response formalism. Second current corre-
sponds to magnetization in the system and it is evalu-
ated with respect to equilibrium state. To calculate the
latter, we adopt Smrcka and Streda approach [48] and
adopt derivations presented in [39]. It is important to
note that the velocity written in the diagonal basis as
ṽαk = T †k v̂αTk = ∂αεk + Aαkσ3εk − εkσ3Aαk, is conve-
niently separated into diagonal and non-diagonal parts,
where Aαk = T †kσ3∂αTk. The latter is responsible for
the transverse responses of the system. The details of
the calculations for the current are given in SM. Overall,
the total current is derived to be

[JO]α =
1

V

∑
kn

[Ω̄
[O]
αβ (k)]nnc1 [(σ3εk)nn]∇βχ, (8)

where c1(x) =
∫ x

0
dη η dg(η)

dη , and g(η) = (eη/T − 1)−1 is
the Bose-Einstein distribution function. We defined an
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O−Berry curvature,

Ω̄
[O]
αβ (k) = iŌ∂αT

†
kσ3∂βTk − (α↔ β) , (9)

a Berry curvature modified with an operator Ō =
σ3T

†
kÔTkσ3. Due to commutation relations (5), matrix

Ō is diagonal in band index. We show there is a sum

rule
∑
n[Ω̄

[O]
αβ (k)]nn = 0 the O−Berry curvature satisfies.

Expressions (8) and (9) together with (5) and (6) are the
main results of this paper.

Single layer honeycomb antiferromagnet. We now ap-
ply our results to specific model of an antiferromagnet on
honeycomb lattice. The lattice of the system is shown in
Fig. 1. We define an exchange Hamiltonian

H = J
∑
<ij>

SiSj +D
∑

<<ij>>

νij [Si × Sj ]z . (10)

Here J > 0 is the nearest neighbor spin exchange, D is
the strength of the second-nearest neighbor spin DMI,
and νij is a sign convention defined in Fig. 1.

Let us assume there is a Neel order in the direction
perpendicular to lattice plane, z−direction. To study
magnons of the model we perform Holstein-Primakoff
transformation from spins to boson operators, SA+ =√

2S − a†aa, SAz = S − a†a, and SB+ = −
√

2S − b†bb†,
SBz = −S + b†b, and assume large S limit. As shown in
SM, the Hamiltonian describing non-interacting magnons
splits in to two blocks. The first block, call it I, is de-
scribed by ΨI = (ak, b

†
−k)T spinor. The Fourier image of

the Hamiltonian of the first block is

HIk = JS

[
3 + ∆k −γk

−γ−k 3−∆k

]
. (11)

where we defined γk = 2e
i kx
2
√

3 cos(
ky
2 )+e

−i kx√
3 , and ∆k =

2DJ [sin(ky)−2 sin(
ky
2 ) cos(

√
3kx
2 )] is the DMI, and we note

∆k = −∆−k. Hamiltonian of the second block described
by ΨII = (bk, a

†
−k)T spinor is obtained by γk → γ−k in

(11).
Let us define operator Ô acting in full, Ψk =

(ak, bk, a
†
−k, b

†
−k)T, space as

Ô =

[
τ̂3 0
0 τ̂3

]
, (12)

where τ̂3 is third 2× 2 Pauli matrix. The density of this
operator written in real space, O(r) = 1

2Ψ†(r)ÔΨ(r) =
a†(r)a(r)−b†(r)b(r), is the spin density. It can be shown
that such an operator satisfies condition (5), thus the spin
density current associated with Ô is well defined. Let us
now calculate the spin density current as a response to
the temperature gradient. Expression for the response
is given by (8), hence we need to find eigenvalues and
calculate O−Berry curvature.

Spectrum of magnons for both blocks of the Hamilto-
nian is obtained to be

Ek = JS
(

∆k +
√

9− |γk|2
)
. (13)
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FIG. 2. (Color online) Spin Nernst conductivity αs
xy, defined

after expression (15). Left: a single layer honeycomb antifer-
romagnet. Right: double layer honeycomb antiferromagnet.
Plots are given for different values of DMI.

Paraunitary matrix TIk that diagonalizes the Hamilto-
nian is readily constructed to be

TIk =

[
cosh(ξk/2)eiχk sinh(ξk/2)

sinh(ξk/2) cosh(ξk/2)e−iχk

]
, (14)

where sinh(ξk) = |γk|/
√

9− |γk|2, cosh(ξk) =

3/
√

9− |γk|2, and γk = |γk|eiχk . One can show that

the II block described by ΨII = (bk, a
†
−k)T spinor has the

paraunitary matrix TIIk obtained from the TIk by setting
χk → −χk, and hence has the same O−Berry curvature
(see SM for more details). The spin density current can
then be written as

[JO]α = − 1

V

∑
k

2Ω
[O]
αβ (k) [c1(Ek)− c1(E−k)]∇βχ,

(15)

with the diagonal elements of the O−Berry curvature
written as

Ω
[O]
αβ (k) = − 3

2 (9− |γk|2)
3/2

(16)

× [(∂αReγk) (∂βImγk)− (∂βReγk) (∂αImγk)] .

We observe that the current vanishes if the DMI is zero
in the system, in which case Ek = E−k. Note that the
O−Berry curvature is independent of the DMI.

Recalling the definition of χ(r), we define SNE con-
ductivity αs

αβ as [JO]α = −αs
αβ∇βT (r), and plot its

dependence on the temperature - see Fig. 2. We now
wish to extract analytic results in the limit of small DMI,
D < J . There are two different symmetry points, namely
Γ, and K, K′ points, in the Brillouin zone of magnons
the spin current gets major contributions from. Close to
Γ = (0, 0) point the spectrum is ungapped and linear.
We expand all functions close to Γ point to obtain a low
temperature, T < JS, dependence of the current. See
SM for details.

[(JO)x]Γ =
5ζ(5)

9
√

3πV

D

J

(
T

JS

)4

∇yT (r), (17)

where an estimate of Riemann zeta function is ζ(5) ≈
1. At K = (0,−4π/3) and K′ = (0,+4π/3) points,
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FIG. 3. (Color online) Magnon spectrum of 80 atoms wide
strip of honeycomb lattice antiferromagnet. Strip is in
x−direction, while y−direction is assumed infinite. The edges
of the system are of the zig-zag type. Left: Single layer with
DMI, D = 0.2J . Right: Double layer. Protected magnon
edge states occur in high energy band gap. Parameters are
chosen to be J ′ = 1.3J and D = 0.2J .

the Berry curvature has an absolute value maximum.
An analytic estimate of the current contribution from
these points at small temperatures T < JS, is ob-

tained [(JO)x]K = 9
√

3Λ2

8πV
D
J

(
JS
T

)2
e−

3JS
T ∇yT (r), where

we introduced a high limit cut-off Λ ∼ 1 for k, such

that
∑

k = Λ2

4π . It is straightforward to show that
[(JO)x]Γ � [(JO)x]K for small temperatures. Both con-
tributions are of the same sign which always results in
the same sign of SNE for this model irrespective of the
temperature and the strength of DMI.

The Chern number of the magnon band for the single
layer honeycomb antiferromagnet is zero (see Fig. 1). As
a result we do not observe any protected by the Chern
number edge states in the finite strip geometry with a
zig-zag edge (see Fig. 3). Nevertheless, we observe an
edge state analogous to the zero energy edge state in
fermionic model of graphene with a zig-zag or bearded
edge. The edge state connects K and K′ points which
have different in sign Berry curvatures. Such edge states
do not contribute to the SNE in the finite geometry of a
single layer honeycomb antiferromagnet.

Double layer honeycomb antiferromagnet. In another
model we consider an antiferromagnet on a double layer
honeycomb lattice (see Fig. 1). We again assume nearest
neighbor antiferromagnet exchange interaction, second-
nearest neighbor DMI, same in both layers, and antifer-
romagnetic interaction between the layers denoted by J ′.
With the Neel order being in z−direction, we follow the
same steps, as in the previous example, and get spectrum
of spin waves

E2
k±/(SJ)2 = λ2 − |γk|2 + ∆2

k − t2

± 2
√

∆2
k(λ2 − |γk|2) + t2|γk|2, (18)

here λ = 3 + t, where t = J ′/J . The spectrum and the
Berry curvature distribution is shown on Fig. 1. There
we observe that the Berry curvature is of the monopole
type located at the M points in the Brillouin zone in
contrast to the magnon Haldane-Kane-Mele model [35].

For this model the Chern numbers of the upper and

lower bands are +1 and −1, respectively, where the topo-
logical charge is 1/3 per M point. The whole band now
contributes in an additive way to SNE which results in a
much larger effect. Numerical calculations of the magnon
SNE are shown in Fig. 2. To uncover the role of the edge
states, we calculate the energy spectrum of a double-
layer strip with a zig-zag edge, see Fig. 3. The high-
energy edge states here are due to DMI, in contrast to
the single-layer model. These edge states are chiral and
are protected by the finite Chern number due to the non-
trivial topology of the bulk magnons. These edge states
are also expected to contribute to SNE conductivity in
the finite geometry [24]. The low-energy edge states are
of the same nature as in single layer honeycomb antifer-
romagnet and are not expected to contribute to SNE.

Absence of thermal Hall effect. The ther-
mal Hall coefficient is given by an expression
κxy = − 1

2T

∑
k

∑2N
n=1 [Ωxy(k)]nn c2 [(σ3εk)nn], where we

defined c2(x) =
∫ x

0
dη η2 dg

dη . We set Ô = σ3 in expression

(9), to obtain the Berry curvature of the energy bands

Ωxy(k) = iσ3∂xT
†
kσ3∂yTk − (x↔ y). For an antiferro-

magnet on a single layer honeycomb lattice, the energy
states are degenerate, corresponding to the two blocks,
I and II, with opposite in sign Berry curvatures. The
two blocks correspond to two sublattices related either
by inversion I or by time-reversal T transformations.
On the other hand, the double layer antiferromagnet
in Fig. 1 is invariant under the global time reversal
symmetry if treated as a 2D system since T followed by
interchange of honeycomb layers is a symmetry. Thus,
the thermal Hall response considered in [39] vanishes for
both models in Fig. 1.

Conclusions. In this paper we theoretically studied
magnon mediated SNE in antiferromagnets. We gave a
general condition for a current to be a well-defined quan-
tity in an antiferromagnet, and then derived its response
to external temperature gradient. We showed that trans-
verse response of this current is defined by a modified
Berry curvature. In antiferromagnets with Neel order,
SNE can be driven by the Dzyaloshinskii-Moriya inter-
action and SNE is present even in systems with T I or
global T symmetries. In both cases the thermal Hall
effect is zero while SNE should change sign with the re-
versal of the Neel vector in the former case but not in the
latter case. We also identified the protected edge states
with counterpropagating magnon modes, carrying spin
but no energy.

Recently we became aware of a paper [49] which dis-
cusses SNE in antiferromagnets. The theory presented
in the present paper appears to be more general, see re-
sults (5), (6), (8), and (9). We also give a solid argument
for why the thermal Hall conductivity in studied system
should vanish.
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