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In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave
modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit
opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya
interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite
transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current.
We find that magnons around the Γ-point and the K-point contribute oppositely to the transverse
spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite
temperature. Possible material candidates are discussed.
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Recent years have seen a surge of interest in utilizing
magnons for information encoding and processing [1–5].
Being an elementary excitation in magnetically ordered
media, a magnon carries not only energy but also spin
angular momentum [6]. The latter is of intrinsic interest
in spintronics, since it would allow the transfer of spin
information without Joule heating. Such a realization
has led to the emerging field of magnon spintronics [7],
in which magnons are expected to play similar roles as
spin- 12 electrons. However, there is one caveat: while the
electron spin forms an internal degree of freedom and is
free to rotate, the magnon spin in a ferromagnet (FM)
is fixed by its chirality, which can only be right-handed
with respect to the magnetization.

By contrast, it is well established that in a collinear
antiferromagnet (AF) with easy-axis anisotropy, symme-
try admits two degenerate magnon modes with oppo-
site chirality [8], and hence opposite spin [9, 10]. These
two modes can be selectively excited and detected via
both electrical [11–13] and optical [14–16] means, which
enables an internal space to encode binary information
similar to the electron spin. It is therefore possible to
explore the magnonic counterparts of phenomena usu-
ally associated with the electron spin. For example, a
spin field-effect transistor of magnons using collinear AF
has been recently proposed [17], in which a rotation in
the magnon spin space can be realized by a gate-tunable
Dzyaloshinskii-Moriya interaction (DMI).

Drawing the above analogy, we theoretically demon-
strate in this Letter a magnon spin Nernst effect (SNE)
in a collinear AF, which is similar to the electron spin
Hall effect [18]. The magnon SNE is intimately related
to the magnon Hall effect [19–24]; it can be viewed as
two opposite copies of the magnon Hall effect for each
spin species, i.e., magnons with opposite spins flow in
opposite transverse directions driven by an applied tem-
perature gradient (Fig. 1). We show that the SNE is
realizable on a honeycomb lattice by including the sec-
ond nearest-neighbor DMI. The SNE coefficient is calcu-
lated through a semiclassical theory of magnon dynamics,

supplemented by general symmetry analyses. Finally, we
propose MnPS3 [25], a layered magnetic compound, and
its variances [26] as possible material candidates to real-
ize the magnon SNE. Our results suggest that collinear
AFs can serve as effective spin generators for both spin
orientations in the same device, and provide a promising
platform to explore novel caloritronic effects.

Model.—Let us consider a collinear AF on a honey-
comb lattice with the Néel order perpendicular to the
hexagon plane, i.e., spins on the A and B sublattices sat-
isfy SA = −SB = Sẑ in the ground state. Since the mid-
point of the A–B link is an inversion center, the nearest
neighbor DMI (D1) vanishes [27]. However, the second
nearest-neighbor DMI (D2) is allowed by symmetry. The
minimal spin Hamiltonian of such a system is

H = J1
∑
〈ij〉

Si ·Sj+D2

∑
〈〈ij〉〉

ξij ·Si×Sj+K
∑
i

S2
iz , (1)

where J1 > 0 is the nearest neighbor antiferromagnetic
exchange coupling, K < 0 is the easy-axis anisotropy
that ensures the Néel vector in the ẑ direction [28], and
ξij = 2

√
3di × dj = ±ẑ with di and dj the vectors

connecting site i to its nearest neighbor site j as shown in
Fig. 1. We can include the second and the third nearest-
neighbor exchange interactions J2 and J3 as well, but
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FIG. 1. (Color online) Left: schematics of the magnon SNE.
Right: the J1–D2 model on a honeycomb AF, the nearest
neighbor and the second nearest-neighbor bonds are labeled
by di and ai, respectively.
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that will not alter the essential physics qualitatively. For
simplicity, we have also set the length of the primitive
vectors to be unity, |ai| = 1.

Using the Holstein-Primakoff transformation [29] and
neglecting magnon-magnon interactions

S+
iA ≈

√
2Sai , S

−
iA ≈

√
2Sa†i , S

z
iA = S − a†iai , (2a)

S+
iB ≈

√
2Sb†i , S

−
iB ≈

√
2Sbi , S

z
iB = b†i bi − S , (2b)

we can express the spin Hamiltonian in the Nambu basis
ψk ≡

[ak
b†k

]
= 1√

N

∑
k e
−ik·Ri

[ai
b†i

]
as H =

∑
k ψ
†
kHkψk.

Here, after discarding the zero-point energy, Hk reads

Hk = S

[
3J1 −K +D2g(k) J1f(k)

J1f
∗(k) 3J1 −K −D2g(k)

]
, (3)

where K = K(2S − 1)/S, f(k) =
∑
i

exp(ik · di) and

g(k) =
∑

i∈odd
2 sin(k · ai) with ai the vectors linking sec-

ond nearest-neighbors (see Fig. 1). We note that g(k) is
an odd function of k.

To diagonalize Eq. (3), we perform a Bogoliubov trans-

formation αk = ukak − vkb
†
k and βk = ukbk − vka

†
k

that mixes magnons on different sublattices [29]. The
Heisenberg equation of motion (EOM) i~α̇k = [αk,Hk]
yields the eigenequations of the Bogoliubov wave func-
tion Ψα =

[
uk
vk

]
of the α-mode as

i~σzωαΨα = (aI + bσx + cσy + dσz) Ψα, (4)

where a = S(3J1 −K), b = SJ1Ref(k), c = SJ1Imf(k),
and d = SD2g(k). Equation (4) is akin to a Schrödinger
equation except the σz factor on its left hand side,
which is ascribed to the bosonic commutation relation
[αk, α

†
k] = δkk′ . This feature enables a hyperbolic pa-

rameterization of Eq. (4): a = ` cosh θ, b = ` sinh θ cosφ,
c = ` sinh θ sinφ. The spectrum is then ~ωα = d± `, and
the corresponding eigenvectors are

Ψα
+ =

(
cosh θ

2

− sinh θ
2e
iφ

)
, Ψα

− =

(− sinh θ
2

cosh θ
2e
iφ

)
, (5)

which respects the generalized orthonormal conditions
〈Ψα
±|σz|Ψα

±〉 = ±1 and 〈Ψα
±|σz|Ψα

∓〉 = 0. Since we are
interested in quasiparticle excitations, we will keep the
positive branch and drop the negative one. In the same
manner, the Heisenberg EOM i~β̇k = [βk,Hk] yields a
similar eigenequation, but with the σz term on the right
hand side of Eq. (4) flipping sign. Nonetheless, the asso-
ciated eigenvectors are exactly the same as Eq. (5), since
neither θ nor φ depend on D2. Together, the energy
spectrum of the two magnon branches are given by

~ωα,β = S
[√

(3J1 −K)2 − J2
1 |f(k)|2 ±D2g(k)

]
, (6)

where the plus (minus) sign corresponds to the α-mode
(β-mode). While the D2 term breaks the degeneracy, it

does not change the wave functions. Note that for suf-
ficiently large D2 (comparable to J1), our theory breaks
down as the ground state is no longer a collinear AF but
a spin spiral. Throughout this Letter, we will restrict to
the regime where the collinear order is preserved.

The physical meaning of the two magnon modes can
be intuitively understood using the semiclassical picture
described by the Landau-Lifshitz equation [8]. By iden-
tifying S+

i and S−i as generating opposite precessions
on site i, we see that both SA and SB precess in the
right-handed (left-handed) way in the α-mode (β-mode),
as illustrated in Fig. 1. Consequently, the two modes
can be distinguished by their opposite chirality. In the
semiclassical picture, it is also clear why the negative
branches are redundant: S+

i e
iωt and S−i e

−iωt describe
the same spin precession since Re[S+

i e
iωt] = Re[S−i e

−iωt]
with S±i = (Sxi ± iSyi )/2. Moreover, since uk = cosh θ/2

and vk = −eiφ sinh θ/2 switch roles between αk and β†k,

the ratio of sublattice magnon densities 〈a†iai〉/〈b†i bi〉 in
the two modes are reciprocal to each other, which, as
schematically shown in Fig. 1, corresponds to different
precessional cone angles of SA and SB .

The magnon chirality is intimately related to its spin.
Since our J1-D2 model preserves the rotational symmetry
around the z-axis, the z-component of the total spin Sz =∑
i(S

z
iA + SziB) should be a good quantum number. By

inserting the Holstein-Primakoff transformation into Sz,
we obtain Sz =

∑
k S

z
k =

∑
k(−a†kak + b†kbk). Since Szk

is diagonal in the Nambu basis, it commutes with the
Hamiltonian: [Szk ,Hk] = 0. By invoking the Bogoliubov
transformation, we further obtain

Sz =
∑

k
(−α†kαk + β†kβk), (7)

thus 〈0|αkSzα†k|0〉 = −1 and 〈0|βkSzβ†k|0〉 = +1 with
|0〉 denoting the magnon vacuum. This indicates that a
quantum of the α-magnon (β-magnon) carriers −1 (+1)
spin angular momentum along the ẑ-direction, i.e., the
spin-z component is locked to the magnon chirality and
is independent of the momentum k. We note that this
relation is specific to the symmetry of our model. For
example, an in-plane easy axis anisotropy destroys the
rotational symmetry around the z-axis, and will spoil
this relation.

AF Magnon dynamics.—Since the two magnon modes
are completely decoupled, we can treat the dynamics of
each independently so long as the σz factor in Eq. (4) is
properly taken care of. Let us consider a magnon wave
packet in the positive branch |W 〉 =

∫
dkw(k, t)|Ψ+(k)〉

localized around the center (rc,kc) in the phase space,
where rc = 〈W |r|W 〉 and kc =

∫
dk|w(k)|2k. The def-

inition of |W 〉 does not specify whether it represents a
spin-up or a spin-down magnon because the two modes
have the same wave function. The magnon dynamics
can be obtained by taking the variational derivative of
the Lagrangian L = 〈W |i~σz ddt |W 〉 − 〈W |H∗|W 〉 with
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respect to rc and kc [21, 30]. The EOM of rc is given by

ṙc =
∂ω(kc)

∂kc
+

1

~
∇U(rc)×Ω(kc), (8)

where U(r) is the potential felt by the magnons, and
Ω(k) is the Berry curvature

Ω(k) = −Im〈∇Ψ+(k)| × σz|∇Ψ+(k)〉

=
1

2
sinh θ(∇θ ×∇φ), (9)

which only has an out-of-plane component Ω(k) = Ω(k)ẑ
in two dimensions. It is the Berry curvature that gives
rise to a transverse motion of the magnon wave packet
and leads to a Hall response.

Before turning to any specific transport effect, let us
explore the symmetry properties of our J1-D2 model and
find out what ensures a transverse transport. Given the
Néel ground state, we expand the spin Hamiltonian (1) to
the quadratic order in δSA = SA− ẑ and δSB = SB + ẑ
as H = HJ +HK +HD, where (set S = 1)

HJ =
∑
〈AB〉

J1(1− δSzA + δSzB + δSA · δSB) ,

HK =
∑
A,B

2K(1 + δSzA − δSzB) +K[(δSzA)2 + (δSzB)2] ,

HD =
∑
〈〈AA′〉〉

D2(δSxAδS
y
A′ − δSyAδSxA′)− (A→ B) ,

with 〈AB〉 denoting nearest neighbor sites and 〈〈AA′〉〉
second nearest-neighbor sites. Since we are interested
in the symmetry properties of magnons, all symmetry
operations act only on the magnon parts δSA and δSB
while leaving the Néel ground state unchanged.

We first analyze the symmetry properties in the ab-
sence of the DMI. It is easy to see that HJ + HK is
invariant under the combined symmetry of time-reversal
(T ) and a 180◦ rotation around the x̂-axis in the spin
space (cx). By demanding the EOM invariant under T cx,
we obtain ω(k) = ω(−k) and Ω(k) = −Ω(−k). On the
other hand, HJ+HK breaks the inversion symmetry (not
true for a ferromagnet), hence a nonzero Berry curvature
can develop even without the DMI [31].

The HD term apparently breaks the Tcx symmetry.
However, as mentioned earlier, the wave functions are in-
dependent of D2, thus the Berry curvature is not affected
by D2. What HD really does is invalidating the relation
ω(k) = ω(−k) as can be seen from Eq. (6). This will
cause a population imbalance between k and −k states,
leading to a net Berry curvature and hence a transverse
current for each spin species. Since the D2 correction to
ω(k) is opposite for the two modes, the transverse ther-
mal current should vanish identically. Therefore, the net
effect should be a spin-Hall like phenomenon.

It is useful to compare the role of the DMI in a hon-
eycomb AF with its FM counterpart [32, 33]. In a hon-
eycomb FM, both Tcx and the inversion symmetries are

kept by the Heisenberg exchange and anisotropy so that
the Berry curvature is identically zero before turning on
the DMI. The D2 term breaks Tcx, which opens a fi-
nite gap at the Dirac points and hence a nonzero Berry
curvature, giving rise to a magnon Hall effect [32, 33];
the physics parallels exactly Haldane’s quantum anoma-
lous Hall model [34]. By contrast, the gap opening in
our honeycomb AF occurs at the Γ-point because of the
easy-axis anisotropy K, whereas the DMI does not affect
the band topology.

Spin Nernst effect.—Magnons are charge neutral, so
they cannot be driven by an electric field. Nevertheless,
by introducing an in-plane temperature gradient ∇T ,
one can create a longitudinal magnon current. Due to
the Berry curvature, a magnon Hall current is induced
for each individual spin species [21, 35] as

jλ =
kB
~
ẑ ×∇T

∫
[dk]Ω(k) {ρλ(k) ln ρλ(k)

−[1 + ρλ(k)] ln[1 + ρλ(k)]} , (10)

where λ =↓ (↑) refers to the α-mode (β-mode), [dk] =
d2k/(2π)2, kB is the Boltzmann constant, and ρλ =
1/(e~ωλ/kBT − 1) is the Bose-Einstein distribution func-
tion with the chemical potential taken to be zero (since
the magnon number is not conservative). As can be an-
ticipated from the symmetry argument shown earlier,
j↑ = j↓ = 0 if D2 vanishes. This is because when
D2 = 0, ω↑(k) = ω↓(k) = ω0(k) is even, so is ρλ(k); but
Ω(k) is odd, thus the integration of Eq. (10) vanishes.
A finite D2 leads to an opposite change of the spectrum
ω↑/↓(k) = ω0(k)∓D2g(k) with g(k) = −g(−k), whereas
the Berry curvature remains unchanged.

In the linear response regime, the SNE current can be
written as j

SN
= ~(j↑ − j↓) ≡ αsxyẑ ×∇T , where αsxy is

the SNE coefficient. In general, an analytic expression of
αsxy = αsxy(D2, T ) is not available. Nevertheless, we can
derive an approximate expression of αsxy in the limit of
D2 � J1. Expanding ρλ to linear order in D2, we obtain
from Eq. (10) that

αsxy ≈
2~D2

kBT 2

∫
dω

ωe~ω/kBT

(e~ω/kBT−1)2
D(ω)Ω(ω), (11)

where D(ω) =
∫
BZ

[dk]δ[ω−ω(k)] is the density of states
(DOS) and Ω(ω) =

∫
BZ

[dk]δ[ω−ω(k)]Ω(k) is the density
of the Berry curvature.

Material realization.—Our theoretical proposal of the
SNE could be experimentally tested in a number of hon-
eycomb mangets. One possibility is Mn-based trichalco-
genide, such as MnPS3 [25]. In this compound, the mag-
netic moments of Mn ions are arranged on layered hon-
eycomb lattices, and are coupled antiferromagnetically.
In addition, the Mn ions are half filled with the high spin
state S = 5

2 , so the quantum fluctuation in these mate-
rials is not as important as that in spin- 12 systems. It
has been well established that to properly capture the
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FIG. 2. (Color online) Dispersion and Berry curvature of the
spin-down (right-handed) magnon mode with J1 = 1.54, J2 =
0.14, J3 = 0.36, and KS = −0.0086 taken from MnPS3 [36],
assuming D2 = 0.36. Numbers are in units of meV.

magnon dynamics in such systems, J1 is not enough;
one needs to include the second and the third nearest-
neighbor exchange couplings J2 and J3 as well [25, 26].
Nonetheless, J2 and J3 do not invalidate the symmetries
of the spectrum and the Berry curvature, they only bring
about quantitative changes.

In the following we will treat D2 as a tuning parameter
in our calculation since its actual value is not available in
existing literature. Figure 2 shows the spectrum of the
spin-down magnon (i.e., the α-mode) and the associated
Berry curvature using material parameters adapted from
MnPS3 [25, 36], assuming D2 = 0.36 meV. Note that
this D2 is well below the critical value for the spin tex-
ture formation so that the Néel ground state is protected.
The odd parity shown in Figure 2 is consistent with our
symmetry analysis.

Figure 3 shows the calculated αsxy of MnPS3 as a func-
tion of temperature and D2 using Eq. (10). Note that
our model analysis based on the linear spin wave theory
is only valid in the temperature range much lower than
the Néel temperature, which is estimated to be 160∼230
K [26]. A striking feature is that the SNE coefficient αsxy
is not monotonic in either D2 or T . For fixed D2, αsxy
first goes negative and then bends up, and finally expe-
riences a sign reversal with an increasing temperature.
Such pattern persists throughout the range of D2 we ex-
plored, and a maximum negative value of αsxy takes place
around T = 23 K and D2 = 0.21 meV.

The sign change of αsxy can be qualitatively under-
stood with the help of Eq. (11). We plot the DOS and
the joint density Ω(ω)D(ω) in Fig. 3 for D2 = 0.21 meV.
For the spin-up mode (spin-down mode), the K′-point
(K-point) of the spectrum is a local minimum, and the
midpoint between K′ (K) and Γ is a saddle point. These
features give rise to two von Hove singularities in the
DOS. We see that the Berry curvature flips sign across
the von Hove singularities, which indicates that magnons
around the Γ-point contribute to αsxy oppositely compar-
ing to magnons from the K′ valley (or K valley, whichever
forms local minimum in the spectrum depending on the
spin of the mode). Raising temperature increases the rel-
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FIG. 3. (Color online) Left: the SNE coefficient as a func-
tion of temperature and D2 based on materials parameters
of MnPS3 [25, 36]. Right: the DOS D(ω) and the product
density Ω(ω)D(ω) for the spin-up mode at D2 = 0.21 meV,
where the two von Hove singularities are marked in red. For
the spin-down mode, D(ω) is the same but Ω(ω) switches sign.

ative contribution of the latter, which competes with the
former and eventually leads to a sign change of αsxy.

Finally, we notice that besides the simple Néel order,
a variety of ground states, including both FM and AF
zigzag configurations, have been observed in transition-
metal trichalcogenides [37]. In the presence of DMIs, this
family of compounds might exhibit rich thermo-magnetic
behavior, rendering them an ideal playground for chiral
magnon transport.

In summary, we have theoretically demonstrated a
magnon spin Nernst effect in a collinear honeycomb an-
tiferromagnet with out-of-plane Néel ground state, and
have proposed monolayer MnPS3 as a possible candi-
date to realize this effect. The underlying physics is at-
tributed to the breaking of the T cx symmetry by the
second nearest-neighbor DMI, which changes the parity
of the spectrum but does not affect the Berry curvature.
The ability to generate a pure transverse spin current
devoid of a thermal current would be of great interest in
magnon spintronics.

Note added.—After the completion of the bulk of this
work (see, e.g., the brief announcement in Ref. [38]), a
related work have appeared, in which a spin Nernst effect
of spinons is discussed [33]. However, they considered a
honeycomb ferromagnet where the SNE is only possible
in the disordered phase, whereas in our case the SNE is
found in the ordered AF phase. The governing physics is
of completely different regimes.
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