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The origin of the high-temperature superconducting state observed in FeSe thin films, whose
phase diagram displays no sign of magnetic order, remains a hotly debated topic. Here we investigate
whether fluctuations arising due to the proximity to a nematic phase, which is observed in the phase
diagram of this material, can promote superconductivity. We find that nematic fluctuations alone
promote a highly degenerate pairing state, in which both s-wave and d-wave symmetries are equally
favored, and Tc is consequently suppressed. However, the presence of a sizable spin-orbit coupling or
inversion symmetry-breaking at the film interface lifts this harmful degeneracy and selects the s-wave
state, in agreement with recent experimental proposals. The resulting gap function displays a weak
anisotropy, which agrees with experiments in monolayer FeSe and intercalated Li1−x(OH)xFeSe.

In most iron-based superconductors (FeSC), supercon-
ductivity is found in close proximity to a magnetically
ordered state, suggesting that magnetic fluctuations play
an important role in binding the Cooper pairs [1–4]. In-
deed, the fact that the Fermi surface of these materials
is composed of small hole pockets and electron pockets
separated by the magnetic ordering vector led to the pro-
posal of a sign-changing s+− wave state, in which the gap
function has different signs in the hole and in the elec-
tron pockets. However, the recent observation of super-
conductivity over 70 K in monolayer FeSe brought new
challenges to the field [5–14]. In contrast to the stan-
dard FeSC, no long-range magnetic order is observed in
thin films or even bulk FeSe [15], and the Fermi sur-
face of monolayer FeSe consists of electron pockets only
[6, 7, 11, 16]. Since Tc in monolayer FeSe is the highest
among all FeSC, the elucidation of its origin is a funda-
mental step in the search for higher Tc in these systems.

One of the proposed scenarios to explain the dramatic
ten-fold increase of Tc in monolayer FeSe with respect to
the 8 K value in bulk FeSe [17] was the strong coupling
to an optical phonon mode of the SrTiO3 (STO) sub-
strate [16, 18, 19], which is manifested by replica bands
observed in ARPES [16]. Although such a coupling can
certainly enhance Tc [20–24], recent experiments indi-
cate that the STO substrate may not be essential to
achieve the high-Tc state. In particular, Tc up to 40 K
was observed in electrostatically-gated films of FeSe with
different thickness grown both on STO and MgO sub-
strates [25]. Similar values of Tc were reported in FeSe
coated with potassium [26, 27] and in the bulk sample
Li1−x(OH)xFeSe [28, 29], which consists of intercalated
FeSe layers. In common to all these systems is the fact
that their Fermi surface consists of electron pockets only,
suggesting that doping by negative charge carriers plays
a fundamental role in stabilizing the high-Tc state.

Importantly, recent experiments in K-coated bulk FeSe
[26] revealed that, besides shifting the chemical potential,
electron-doping also suppresses the nematic order ob-

served in undoped bulk FeSe at Tnem ≈ 90 K [30]. In the
nematic state, whose origin remains hotly debated [31–
35], the x and y in-plane directions become inequivalent
and orbital order emerges. Remarkably, the highest Tc in
the phase diagram of K-coated FeSe is observed near the
region where Tnem nearly vanishes. Similarly, in the case
of FeSe thin films grown on STO, nematic order is ob-
served over a wide range of film thickness [36, 37], but not
in the monolayer case [38]. These observations, combined
with the absence of magnetic order in these systems, begs
the question of whether nematic fluctuations can provide
a sensible mechanism to explain the superconductivity of
thin films of FeSe [22, 26, 39, 40].

In this paper, we show that nematic fluctuations alone
favor degenerate s-wave (A1g) and d-wave (B2g) super-
conducting states in FeSe thin films. This degeneracy
stems from the fact that while the two electron pockets
are separated by the momentum QM = (π, π), nematic
fluctuations are peaked at Qnem = 0. More importantly,
the SC ground state manifold has an enlarged U(1)×U(1)
degeneracy, which is very detrimental to SC, since fluc-
tuations of one SC channel strongly suppress long-range
order in the other SC channel. Remarkably, this degener-
acy is removed by the sizable spin-orbit coupling (SOC)
observed in these compounds [41], which lift the pair-
ing frustration and selects s-wave over d-wave, stabiliz-
ing a SC state at higher temperatures. In thin films, the
inversion symmetry-breaking (ISB) at the interface also
contributes significantly to this degeneracy lifting. In-
terestingly, recent experiments propose that an s-wave
state is realized in FeSe thin films [42]. We also find
that, when the SOC and/or ISB energy scales are larger
than the energy scale associated with the mismatch be-
tween the two electron pockets, a nearly isotropic gap ap-
pears at the electron pockets, whose angular dependence
agrees with ARPES and STM measurements in FeSe thin
films [26, 43] and intercalated Li1−x(OH)xFeSe [44].

Microscopic model We start with the full five-
orbital tight-binding model in the 1-Fe Brillouin zone
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and project it on the subspace of the dxz, dyz, and dxy
orbitals, which give the largest contribution to the Fermi
surface. In particular, while the X electron pocket cen-
tered at QX = (π, 0) has dyz/dxy orbital content, the
Y electron pocket centered at QY = (0, π) has dxz/dxy
content (see Fig. 1a). Following Ref. [45], we expand
the projected tight-binding matrix in powers of the mo-
mentum measured relative to QX and QY . Defining two
spinors corresponding to each electron pocket:

ΨX(k) ≈ (dyz(k + QX) , dxy(k + QX))
T

ΨY (k) ≈ (dxz(k + QY ) , dxy(k + QY ))
T

(1)

the non-interacting Hamiltonian is written as H0 =∑
k,i=X,Y

Ψ†i (k)Ĥi(k)Ψi(k) where Ĥi are 2× 2 matrices in

spinor space (see the supplementary material SM). The
B2g nematic order parameter is described by the bosonic
field φq, with q = (Ωn, q), whereas the nematic fluctua-
tions are given by the nematic susceptibility χnem(q,Ωn).
For our analysis, it is not necessary to specify the origin
of the nematic order parameter, but rather how it cou-
ples to the electronic states. As discussed in Ref. [46],
there are two possible nematic couplings: λ1, which cou-
ples φq to the onsite energy difference between the dxz
and dyz orbitals, and λ2, which couples φq to the hop-
ping anisotropy between nearest-neighbor dxy orbitals
(see Fig. 1b):

Hint =
∑

q,i=X,Y

φ−qΨ†i (k)λ̂nemi Ψi(k + q) (2)

with λ̂nemi = ±diag (λ1, λ2), where the plus (minus) sign
refers to i = X (i = Y ). Here, we focus on the effect of
short-ranged frequency independent nematic fluctuations
and approximate χnem(q,Ωn) by its zero momentum and
zero frequency value. The first approximation is justified
due to the smallness of the electron pockets, whereas the
second one is reasonable as long as the system is not too
close to a nematic quantum critical point [40, 47, 48].
Note that renormalization-group calculations on a re-
lated microscopic model support the idea that the disap-
pearance of the central hole pockets suppresses nematic
order [32].

Superconducting instability We decompose the pair-
ing states in terms of the different irreducible represen-
tations of the space group of the FeSe plane, P4/nmm
(see Ref. [45] and the SM), and focus on the two lead-
ing pairing channels, which belong to the singlet s-wave
(A1g) and d-wave (B2g) symmetry representations [49]:

ΨT
X

(
∆1 0
0 ∆2

)
⊗ iσ2ΨX ±ΨT

Y

(
∆1 0
0 ∆2

)
⊗ iσ2ΨY (3)

where the plus (minus) sign refers to s-wave (d-wave)
pairing. The gaps ∆1 and ∆2 correspond to intra-orbital

Figure 1: (a) Fermi surface (FS) of a thin film of FeSe, consist-
ing only of electron pockets, in the unfolded (solid lines) and
folded (dotted lines) Brillouin zones. The color around the
FS indicates the orbital that contributes the largest spectral
weight. (b) The two different nematic couplings: λ1 couples
to the on-site energy difference between the dxz and dyz or-
bitals, whereas λ2 couples to the anisotropic hopping between
nearest-neighbor dxy orbitals.

pairing within the dxz/dyz orbitals and dxy orbitals,
respectively.∆1 and ∆2 are found via the gap equations:

ηM̂ = χnemT
∑
n,k

(
λ̂nemi

)T
ĜT
−k,iM̂Ĝk,iλ̂

nem
i (4)

where η is the SC eigenvalue, M̂ =

(
∆1 0
0 ∆2

)
, and

Ĝ−1p,i = iωn − Ĥi (p). The SC transition temperature
is obtained when η = 1. Hereafter, we set the value of(
λ21 + λ22

)
χnem to yield Tc = 5meV when λ2 = 0.

Figure 2: (a) The eigenvalue η of the gap equation (4) as func-
tion of the ratio between the two nematic couplings λ2/λ1.
Without SOC or ISB, the s-wave and d-wave solutions have

the same eigenvalue (dashed green curve, η
(0)

s/d ). The pres-

ence of SOC or ISB removes this degeneracy, making s-wave
(red curve, ηs) the leading pairing instability and d-wave (blue
curve, ηd) the subleading one. (b) Normalized SC gap along
the X electron pocket as function of the angle θ for different
values of λ2/λ1.

Solution of the gap equations reveals that for all ratios
of the nematic coupling constants λ1 and λ2, the super-
conducting instabilities in the s-wave and d-wave chan-
nels are always degenerate, as shown in Fig. 2a. Although
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the intra-orbital gaps ∆1 and ∆2 are isotropic, the gaps
projected onto the Fermi pockets, ∆X and ∆Y , acquire
an angle-dependence due to the orbital content of the
Fermi pockets. To illustrate this behavior, Fig. 2b shows
∆X as function of the polar angle θ. When λ1 > λ2, ne-
matic fluctuations couple mainly to the dxz/dyz orbitals;
as a result, ∆X is proportional to the spectral weight
of the dxz/dyz orbital on the X pockets, which is maxi-
mum around θ = ±π/2 (see Fig. 1a). Consequently, ∆X

reaches its maximum at θ = ±π/2 and its minimum at
θ = 0, π. Conversely, for λ1 < λ2, the gap is maximum at
θ = 0, π, where the spectral weight of the dxy orbital on
the X pocket is maximum. Recent ARPES experiments
in FeSe suggest that λ1 and λ2 are comparable [50].

In terms of the averaged gaps ∆X and ∆Y , the s-wave
and d-wave solutions correspond to ∆s = 1

2 (∆X + ∆Y )
and ∆d = 1

2 (∆X − ∆Y ). Using this notation, the de-
generacy between s and d can be understood as a con-
sequence of the fact that nematic fluctuations, peaked
at Qnem = 0, do not couple the gaps at the X and
Y pockets, since they are displaced by the momentum
QM = QX + QY = (π, π). This suggests an enlarged
U(1)×U(1) degeneracy of the SC ground state manifold,
corresponding to two decoupled SC order parameters. To
investigate the robustness of this enlarged degeneracy, we
went beyond the linearized gap equations and computed
the superconducting free energy to quartic order in the
gaps (see SM), obtaining:

FSC = a
(
|∆X |2 + |∆Y |2

)
+
u

2

(
|∆X |4 + |∆Y |4

)
(5)

This form confirms that ∆X and ∆Y remain decoupled
to higher orders in FSC . The consequences of this en-
larged U(1)× U(1) degeneracy are severe: going beyond
the mean-field approximation of Eq. (4), fluctuations of
one SC channel suppress long-range order in the other
channel, i.e. Tc,s − Tc,0 ∝ −

〈
∆2

d

〉
. Such a pairing frus-

tration is therefore detrimental to SC [51–54], suggesting
that nematic fluctuations alone do not provide an opti-
mal SC pairing mechanism in this system. Interestingly,
previous investigations of SC induced by nematic fluctu-
ations in different models also found nearly-degenerate
states [39, 55].

Spin-orbit coupling (SOC) and Inversion symmetry-
breaking (ISB) The analysis above neglected a key prop-
erty of the crystal structure of the FeSe plane: Because
of the puckering of the Se atoms above and below the Fe
square lattice, the actual crystallographic unit cell con-
tains 2 Fe atoms. As a result, in the 2-Fe Brillouin zone
(the folded BZ), the momentum QM = (π, π) becomes
Q̃ = 0 (hereafter the tilde denotes a wave-vector in the
folded BZ). Thus, the two electron pockets become cen-
tered at the same momentum Q̃ = (π, π) and overlap, as
shown by the dashed lines in Fig. 1a.

This property opens up the possibility of coupling the
∆X and ∆Y gaps and removing the enlarged U(1)×U(1)

degeneracy. At the non-interacting level, this is accom-
plished by the atomic spin orbit coupling λSOCS · L,
which couples the dxz (dyz) orbital associated with the
Y (X) pocket to the dxy orbital associated with the X
(Y ) pocket [46]:

HSOC =
i

2
λSOC

∑
k

Ψ†Y (τ+ ⊗ σ1 + τ− ⊗ σ2) ΨX + h.c.

(6)
where τ and σ are Pauli matrices in spinor and spin
spaces, respectively. While in the normal state the SOC
splits the two overlapping elliptical electron pockets cen-
tered at Q̃ = (π, π) into inner and outer pockets (see
Fig. 3a and the ARPES data of [41]), in the SC state it
couples the gaps ∆X and ∆Y . For λSOC small compared
to εm – the energy scale associated with the mismatch
between the X and Y electron pockets – this coupling is
given perturbatively by the Feynman diagram of Fig. 3b,
which gives the following contribution to the SC free en-
ergy of Eq. (5):

δFSC = γ (∆X∆∗Y + h.c) (7)

As shown in the SM, γ ∝ −λ2, implying that the SOC
selects the s-wave state, with ∆X and ∆Y of the same
sign, over the d-wave state, with ∆X and ∆Y of oppo-
site signs. More importantly, it lifts the U(1) × U(1)
degeneracy between the two pairing states, suppressing
the negative interference of one pairing channel on the
other. We confirmed this general conclusion by evaluat-
ing explicitly the gap equations in the A1g (s-wave) and
B2g (d-wave) channels, finding that ηs > ηd for all values
of the nematic coupling constants, as shown in Fig. 2a.
Note that the SOC induces triplet components to these
pairing states (see SM).

Figure 3: (a) The Fermi surface in the presence of SOC or ISB
consists of split inner (red) and outer (blue) electron pockets.
(b) Feynman diagram representing the coupling between the
gaps in the two electron pockets promoted by SOC or ISB.
This coupling lifts the degeneracy between s-wave and d-wave.

Having established that the A1g channel is the leading
SC instability, we now discuss the angular dependence
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of the gaps ∆i/o around the inner (i) and outer (o) elec-
tron pockets. When λSOC � εm, as it is apparent from
Fig. 1a, the outer electron pocket consists mostly of dxy
orbital spectral weight, whereas the inner pocket consists
mostly of dxz/dyz spectral weigh. The dxz and dyz gap
functions have essentially the same angular dependence
as in the case without SOC, shown previously in Fig. 2b.
Consequently, the gap anisotropy depends strongly on
the ratio λ1/λ2 between the two nematic couplings. For
λ1 ≈ λ2, the gaps are nearly isotropic around the inner
and outer pockets, whereas for λ1 < λ2 or λ1 > λ2, the
gaps are anisotropic in both pockets.

The gap structure however changes dramatically in the
case λSOC � εm (with both still much smaller than the
Fermi energy). In this case, the two reconstructed elec-
tron pockets are fully hybridized, implying that their or-
bital weights are similar. As a result, the SC gaps on
the inner and outer pockets are weakly anisotropic for
all values of the ratio λ1/λ2, whose main effect is to dis-
place the position of the gap maxima. While for λ1 < λ2
the gap minima are located at the intersection points be-
tween the two un-hybridized electron pockets, θ = ±π/4,
for λ1 > λ2 the gap minima are found at the intersec-
tion points (see Fig. 4). Interestingly, recent ARPES
experiments in monolayer FeSe observe gap maxima at
θ = ±π/4 [56], whereas STM measurements in the inter-
calated Li1−x(OH)xFeSe compound report gap minima
at θ = ±π/4 [44].

Figure 4: Angular dependence of the SC gap along the inner
(red) and outer (blue) electron pocket in the case where the
SOC coupling is much larger than the electron pockets mis-
match. The positions of the gap minima are controlled by
λ2/λ1.

Besides SOC, the inversion-symmetry breaking (ISB)
at the interface of thin films also lifts the degeneracy
between s-wave and d-wave in the case of FeSe thin films.
In terms of the low-energy spinor states, ISB gives rise
to the term [57]:

HISB = λISB
∑
k

Ψ†X
τ0 + τ3

2
ΨY + h.c. (8)

Similarly to SOC, λISB hybridizes the two electron
pockets and favors s-wave over d-wave, lifting the de-
generacy between the two states (Fig. 3b) and enhancing
the s-wave pairing instability. As shown in the SM, the

effect of ISB on the angular dependence of the gap func-
tions around the inner and outer pockets is very similar
to the effect of SOC. The only difference is that because
ISB barely couples to the dxy orbitals, the gaps remain
moderately anisotropic.

So far we considered only the zero-momentum contri-
bution of the nematic fluctuations. In general, however,
χ−1nem (q) = ξ−2nem + q2. Thus, although small-momentum
fluctuations do not couple the X and Y pockets, leaving
the s-wave/d-wave degeneracy intact, large-momentum
fluctuations couple them, giving rise to their own free-
energy coupling γ′ in Eq. (7). As shown in the SM,
however, γ′ � γ, implying that the small-momentum
approximation is sensible.

Besides SOC and ISB, other effects can lift the s-
wave/d-wave degeneracy promoted by the dominant ne-
matic fluctuations. For instance, magnetic fluctuations
peaked at (π, π) would favor the d-wave state [58, 59],
whereas a momentum-independent electron-phonon in-
teraction would favor the s-wave state. To the best
of our knowledge, no sign of (π, π) magnetic order has
been observed in FeSe thin films with only electron
pockets. First-principle calculations for the momentum-
independent phonon coupling estimate a resulting Tc . 1
K [60], an energy scale that may be too small to signifi-
cantly lift the degeneracy, since Tc ≈ 40 K in FeSe thin
films.

Previous works have shown that forward-scattering
phonons can lead to a sizable enhancement of Tc in FeSe
films grown over SrTiO3 or BaTiO3 [18, 20–24]. Indeed,
the observation of replica band in ARPES measurements
highlights the importance of this phonon mode [16]. Sim-
ilarly to the nematic fluctuations studied here, forward-
scattering phonons are also peaked at zero momentum,
and therefore are expected to also promote degenerate s-
wave/d-wave SC states [24]. In this regard, the two pair-
ing mechanisms may cooperate to promote a robust SC
state, whose degeneracy is lifted by SOC or ISB. While
a detailed analysis of this problem is beyond the scope of
this work, it is tempting to attribute to this cooperative
effect the fact that Tc is higher in FeSe films grown over
titanium oxide interfaces as compared to other types of
interfaces or other FeSe-based compounds.

Summary In summary, we showed that the combined
effect of nematic fluctuations and SOC/ISB favors an s-
wave state in electron-doped thin films of FeSe, in agree-
ment with recent experimental proposals [42]. The role
played by SOC and ISB is fundamental to lift the degen-
eracy with the sub-leading d-wave state, which suppresses
the onset of long-range SC order. Although nematic fluc-
tuations are momentum-independent in our model, the
gap function can acquire a pronounced angular depen-
dence since the nematic order parameter couples differ-
ently to dxz/dyz and dxy orbitals. Interestingly, in the
regime where the SOC and ISB couplings are larger than
the mismatch between the electron pockets, we obtain a
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gap function whose angular dependence agrees qualita-
tively with measurements in monolayer FeSe and inter-
calated Li1−x(OH)xFeSe. More generally, our work pro-
vides an interesting framework in which superconductiv-
ity can develop in the presence of nematic fluctuations.
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