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Fractional quantum Hall liquids exhibit a rich set of excitations, the lowest-energy of which are the
magneto-rotons with dispersion minima at finite momentum. We propose a theory of the magneto-
rotons on the quantum Hall plateaux near half filling, namely, at filling fractions ν = N/(2N + 1)
at large N . The theory involves an infinite number of bosonic fields arising from bosonizing the
fluctuations of the shape of the composite Fermi surface. At zero momentum there are O(N) neutral
excitations, each carrying a well-defined spin that runs integer values 2, 3, . . .. The mixing of modes
at nonzero momentum q leads to the characteristic bending down of the lowest excitation and the
appearance of the magneto-roton minima. A purely algebraic argument show that the magneto-
roton minima are located at q`B = zi/(2N + 1), where `B is the magnetic length and zi are the
zeros of the Bessel function J1, independent of the microscopic details. We argue that these minima
are universal features of any two-dimensional Fermi surface coupled to a gauge field in a small
background magnetic field.

PACS numbers: 73.43.Cd,73.43.Lp

Introduction.—Interacting electrons moving in two di-
mensions in a strong magnetic field can form nontriv-
ial topological states: the fractional quantum Hall liq-
uids [1, 2]. When the lowest Landau level is filled at cer-
tain rational filling fractions, including ν = N/(2N + 1)
and ν = (N + 1)/(2N + 1) (the Jain’s sequences), the
quantum Hall liquid is gapped, and the lowest energy
mode is a neutral mode. Girvin, MacDonald, and Platz-
man [3] proposed, based on a variational ansatz that the
neutral excitation has a broad minimum at q`B ∼ 1 at the
Laughlin plateau ν = 1/3. Several years later, the exis-
tence of a neutral mode was confirmed experimentally [4].
Later experiments reveal surprising richness in the struc-
ture of the spectrum of neutral excitations. Unexpect-
edly, the ν = 1/3 state may have more than one branches
of excitations [5]. Furthermore, higher in the Jain se-
quence, i.e., for ν = 2/5, 3/7, etc., the lowest excita-
tion has been found to have a dispersion with more than
one minima [6, 7]. Various theoretical approaches have
been brought to the problem of the magneto-roton [8–
12]. Currently, the most common viewpoint is based on
the composite fermion picture of the fractional quantum
Hall effect, in which the neutral modes are bound states
of a composite fermion and a composite hole.

The notion of the composite fermion is tightly con-
nected to the Halperin-Lee-Read (HLR) field theory [13],
proposed as the low-energy description of the half-filled
Landau level. Recently, an analysis of the particle-hole
symmetry of the lowest Landau level has lead to a re-
vision of the HLR proposal: the low-energy degrees of
freedom is now a Dirac composite fermion coupled to
a gauge field [14]. Magneto-rotons provide a rare win-
dow into the dynamics of a Fermi surface coupled to a
gauge field, a long-standing problem of condensed matter

physics [15, 16].

None of the previous analytical approaches to the
magneto-roton can deal with the non-Fermi liquid at
ν = 1/2, or even with a composite Fermi liquid with
general nonzero values of the Landau parameters. In
this paper, we develop a theory of neutral excitations in
the quantum Hall liquid, reliable in the limit N →∞ in
the Jain’s series ν = N/(2N + 1), where quantum Hall
plateaux have been found to up to at least N = 10 [17].
In this theory, the neutral excitations are viewed as quan-
tized shape fluctuations of the Fermi surface. This in-
terpretation is quite different from what have been sug-
gested so far, and is one with a predictive power. In
particular, one can relate the whole dispersion curves of
the neutral excitations to the excitation energies at zero
momentum. We find that the dispersion curves have deep
magneto-roton minima at large N . Remarkably, the mo-
menta at the magneto-roton minima are independent of
all microscopic dynamics, and are in quantitative agree-
ment with existing experimental data even for small N .

Quantizing the shape of the Fermi surface.—To find
the magneto-rotons we will first bosonize the Fermi sur-
face. This procedure was studied previously [18–21]. Our
approach relies on a commutation algebra of fluctuations
of the shape of the Fermi surface, first derived by Hal-
dane [18]. Here we provide a simple semiclassical deriva-
tion of this algebra.

We assume that the ν = 1/2 state is gapless and has
a Fermi surface with the Fermi momentum pF , related
to the external magnetic field B by p2F = B. The Fermi
liquid is characterized by the Fermi velocity vF and the
Landau’s parameters Fn. The effective mass is defined
as m∗ = pF /vF ; the Fermi energy scale as εF = vF pF .

In the fractional quantum Hall ν = N/(2N + 1)
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FIG. 1. A deformed Fermi surface.

state, the composite fermions live in a magnetic field
b = B/(2N + 1), effectively forming an integer quan-
tum Hall state. We are interested in the regime of fre-
quency and momentum of order N−1 compared to the
Fermi energy and momentum. We now propose that all
low-energy excitations can be viewed as deformations of
the Fermi surface from the circular shape, which we pa-
rameterize by a function pF (t,x, θ) that depends on time
and space, and also on the direction in momentum space
θ (py/px = tan θ) (see Fig. 1). Furthermore, we decom-
pose the perturbation into different angular momentum
channels,

pF (t,x, θ) = p0F + u(t,x, θ) = p0F +

∞∑
n=−∞

un(t,x) e−inθ.

(1)
In the language of Landau’s Fermi liquid theory, the state
parameterized by pF (t,x, θ) corresponds to a distribution
function np(t,x) which is one inside the Fermi line and
zero outside the line.

We now derive the commutation relation between the
uns with the following prescription. If we define an op-
erator F (and similarly G) as

F =

∫
dx dp

(2π)2
F (x,p)np(x), (2)

where np(x) is the quasiparticle distribution function,
then we need to impose the condition on the commuta-
tion relation so that

[F, G] = −i
∫
dx dp

(2π)2
{F, G}(x,p)np(x), (3)

where the {F, G} is the classical Poisson bracket between
F and G,

{F, G} =
∂F

∂pi

∂G

∂xi
− ∂G

∂pi

∂F

∂xi
− bεij ∂F

∂pi

∂G

∂pj
, (4)

where we have allowed the composite fermions to be in
an external magnetic field b. For Jain’s sequences b =
±B/(2N + 1). Restricting np to be of the form of the
step function (1 inside the Fermi line, 0 outside), F , G,

and the right-hand side of Eq. (3) become functionals of
the shape of the Fermi surface, and one can easily derive
the commutator of the small perturbations u:

[u(x, θ), u(x′, θ′)] =
i(2π)2

pF

[
−ni(θ)

∂

∂xi
+

b

pF

∂

∂θ

]
[δ(x− x′)δ(θ − θ′)] +O(u), (5)

where n(θ) = (cos θ, sin θ). In terms of un, the formula
reads

[um(q), un(q′)] =
π

pF

[
2bm

pF
δm+n,0 + δm+n,1q+

+ δm+n,−1q−

]
(2π)2δ(q + q′) +O(u), (6)

where q± = qx±qy. This commutation relation has been
previously derived in Ref. [18] by extending Tomonaga’s
bosonization method to higher dimensions. Note that
the algebra depends only on the size of the Fermi surface
pF , but not on any dynamic properties (Fermi velocity,
Landau’s parameters etc.).

Gauging the Fermi surface.—The composite fermion
is coupled to a dynamical gauge field. Fermi surface
coupled to a gauge field is a long-standing theoretical
problem, and the bosonized language allows us to partly
address it.

In the bosonic description, the temporal component
of the gauge field a0 is coupled to u0 and the spatial
components are coupled to u±1. In the Dirac composite
fermion theory, the leading term in action for aµ is the
Maxwell term. If the dynamical gauge field is at infinitely
strong coupling, then the coupling to external field simply
imposes the constraints u0 = u±1 = 0 as the result of the
equations of motion δS/δaµ = 0. The assumption of
strong gauge coupling should become better and better
in the limit N →∞. This is due to two reasons. Firstly,
the coupling of the composite fermions to the gauge field
is set at the Fermi energy εF and momentum pF , while
the scales of interest for our problem are εF /N and pF /N .
This gauge coupling is relevant for contact and marginal
for Coulomb interactions. Secondly, at these low energies
the Fermi surface is effectively O(N) fermionic species
(corresponding to O(N) patches on the Fermi surface in
the renormalization group treatment [22, 23]), boosting
the ’t Hooft coupling by an additional factor of N . (The
argument is more complicated in the case of the HLR
theory with a Chern-Simons term in the action for aµ,
but the conclusion is the same).

Hamiltonian and equation of motion.—Assuming the
composite fermions form a Fermi liquid with Landau’s
parameters Fn, the Hamiltonian of the system is

H =
vF pF

4π

∫
dx

∞∑
n=−∞

(1 + Fn)un(x)u−n(x), (7)
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where Fn are the Landau parameters. In the case of
a marginal Fermi liquid, we may understand by Fn the
Landau parameters evaluated at the scale of the energy
gap. The Hamiltonian (7) and the commutation rela-
tions (6) form our theory of the neutral excitations in
the fractional quantum Hall fluid. This theory involves
an infinite number of fields un, reminiscent of higher-spin
relativistic field theories [24, 25].

Let us first consider zero wavenumber. Then according
to Eq. (6) the operators u can be divided into pairs of cre-
ation and annihilation operators (u−2, u2), (u−3, u3) etc,
with un for n > 0 being the annihilation and with n < 0,
creation operators. The frequency of the oscillators are

ω(0)
n = n(1 + Fn)ωc, ωc =

b

m∗
. (8)

The index n can be interpreted as the spin of the exci-
tation. For example, the contribution of spin-n mode to
the spectral density of the density operator is expected
to be q2n at small n, so the leading contribution to the
spectral weight comes from the n = 2 mode. The order-
ing in energy of the modes depend on Fn; in the simplest
scenario n = 2 is the lowest mode. Since ωc ∼ N−1,
and the cutoff of our theory is O(N0), one should expect
O(N) of these modes (provided that Fn does not increase
as a power of n).

If one puts Fn = 0 in Eq. (8) one would find ω
(0)
n =

nωc. This can be interpreted as the energy of creating
a pair of a quasiparticle and a quasihole, separated by n
Landau-level steps. Note that the näıve lowest mode with
n = 1 disappears due to the coupling to the dynamical
gauge field [26]. As far as we know, Eq. (8) does not have
a simple interpretation when the Landau parameters are
nonzero.

To find the dispersion relation at finite wavenumber
q one needs to solve the linearized equation of motion,
which can be obtained by taking the the commutator
with the Hamiltonian (7). In momentum space, choosing
q to point along the x axis, the equation is

[ω − n(1 + Fn)ωc]un =
vF q

2
[(1 + Fn−1)un−1

+ (1 + Fn+1)un+1] (9)

for n ≥ 2 and n ≤ −2 and where by construction u±1 =
0. The task of finding the spectrum of excitations thus
reduces to finding the eigenvalues of a certain tridiagonal
matrix. Using Eq. (8) this equation can be rewritten as

(ω − ω(0)
n )un =

2N + 1

2
q`B

[
ω
(0)
n−1

n− 1
un−1 +

ω
(0)
n+1

n+ 1
un+1

]
.

(10)
Remarkably, Eq. (10) determines completely the disper-
sion curves from their starting points at q = 0. Thus we
speculate that Eq. (10) is valid even when the ν = 1/2
state is a non-Fermi liquid. For small q the equation can
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FIG. 2. The dispersion curves for the lowest two modes for
F2 = 0.35, Fn = 0 with n ≥ 3. The horizontal axis is (2N +
1)q`B and the vertical axis is the energy in units of ωc. The
cusp at zero energy is an artifact of the infinite N limit.

be solved perturbatively over q. For example, for the
n = 2 mode we find

ω2(q)

ω
(0)
2

= 1− (2N + 1)2

24
(
1− ω(0)

2 /ω
(0)
3

) (q`B)2 +O(q4). (11)

If the spin-2 mode is the lightest one, then its dispersion
curve bends down when we go to finite q. Equation (11)
relates the curvature at q = 0 of the lowest mode and the
ratio of the energies of the spin-3 and spin-2 modes, and
is one prediction of the theory.

It is intriguing that Ref. [5] found two modes at ν =
1/3. While it is tempting to identified them with spin-2
and spin-3 excitations, it is unclear if such identification
can be made at such a low value of N , N = 1.
The magneto-roton minima.—For Nq`B ∼ 1 one has

to solve the full system of equations, Eq. (9) or (10), to
find the dispersion curves. In Fig. 2 we plot a typical
result. We note that the energy of the lowest mode goes
to zero at a finite momentum. We now show analytically
that this always happens at infinitely strong gauge cou-
pling. We need to solve Eq. (10) with ω = 0 and the
boundary conditions u1 = 0 and un → 0 when n → ∞.
The solution to this recursion relation, which satisfies the
boundary condition un → 0 when n→∞, is

un =
(−1)n

1 + Fn
Jn

(pF q
b

)
. (12)

The boundary condition u1 = 0 requires J1(pF q/b) = 0.
The latter occurs at q = zib/pF where zi are the zeros of
the Bessel function J1. One can write this as

q`B = zi
b

p2F
= zi

b

B
=

zi
2N + 1

(13)

for the filling fractions ν = N/(2N + 1) and ν = (N +
1)/(2N + 1).

The fact that the energy of an excitation is exactly zero
is an artifact of the strong gauge coupling approximation,
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which we have argued to occur at infinite N ; when the
hard constraints on u0 = u±1 = 0 are relaxed, these ze-
ros of the dispersion relation should become minima. The
values of the energy at the minima are smaller by a power
of N compared to the energy scale of the excitations at

q = 0 (ω
(0)
n ), but are nevertheless nonzero [27]. This

is confirmed in a more detailed treatment of the com-
posite fermions, taking into account the density-density
Coulomb interaction [28]. On the other hand, the strict
N = ∞ limit of infinitely strong gauge coupling allows
us to determine analytically the locations of the minima
of the dispersion curves. Here we find a surprising result
that the positions of the minima on the momentum axis
do not at all depend on the parameters appearing in the
Hamiltonian [29].

We now show that the robustness of the locations of the
magneto-roton minima is due to them being determined
by the commutator algebra (6), but not by the Hamilto-
nian. In fact, at the values of q set by Eq. (13), there exist
a pair of operators, Ô and Ô†, which commutes with all
un (and consequently with the Hamiltonian) to leading
order in u,

Ô =

∞∑
n=2

(−1)nJn

(
pF
b
q

)
un. (14)

In other words, if one defines the commutator matrix
Cmn as

[um(q), u−n(q′)] = Cmn(2π)2δ(q + q′) (15)

for m,n > 0, where

Cmn =
2πb

p2F


2 z 0 0 . . .
z 3 z 0 . . .
0 z 4 z . . .
0 0 z 5 . . .
. . . . . . . . . . . . . . .

 , z =
2N + 1

2
q`B ,

(16)
then at the momenta (13) the matrix C has a zero eigen-
value. Across these momenta, a role of creation and anni-
hilation operators is exchanged for one pair of operators.
It is not difficult to show that any Hamiltonian quadratic
in u’s needs to have a zero eigenvalue when such an ex-
change occurs.

The positions of the magneto-roton minima (13) and
their complete independence of the details of the Hamil-
tonian are the central result of this paper. In the past,
model calculations have shown that the positions of the
magneto-roton minima depend very weakly on the inter-
actions (see, e.g., Ref. [30]), but the fundamental reason
behind this fact was not understood.

It is worth remembering, however, that our derivation
requires q`B � 1, which means that zi in Eq. (13) should
be one of the first o(N) roots of J1. However, the values
found in Eq. (13) seem to fit existing data quite well even
for relatively large q`B . Limiting ourselves to the range

explored in Ref. [7], q`B . 1.2, our prediction for the
locations of the magneto-roton minima is summarized in
the following table (experimental values extracted from
Ref. [7] in bracket)

n = 1 n = 2 n = 3
ν = 2/5 0.77 (0.86)
ν = 3/7 0.55 (0.52) 1.00 (1.06)
ν = 4/9 0.43 (0.40) 0.78 (0.85) 1.13 (1.25)

All these values are surprisingly close (within 15% or less)
to existing experimental [7] and in numerical [10] results,
despite the smallness of N and the large values of the q`B
under discussion. Even forN = 1, the calculated position
of the magneto-roton q`B = 1.28 is in good agreement
with the original estimate of Ref. [3]. We interprete the
agreement as confirming the validity of the interpetation
of the low-lying neutral excitations as shape fluctuations
of the Fermi surface.

Since the locations of the magneto-roton minima de-
pend only on the commutator algebra, which originates
from the kinematics of the Fermi surface, rather than
from Hamiltonian, we expect the minima would sur-
vive even in the non-Fermi-liquid regime of short-ranged
electron-electron interactions.

To summarize, the universal momenta at the magneto-
roton minima (13), along with the existence of multiple
branches of neutral excitations, each with a distinct value
of the spin at q = 0, are the main predictions of this pa-
per. These predictions should be valid in any system de-
scribed by a Fermi surface coupled to a dynamical gauge
field in a small background magnetic field.
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