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Experimental studies have identified an anomalous grain size dependence associated with the
critical tensile pressure that a metal may sustain before catastrophic failure by cavitation processes.
Here we derive the first quantitative theory (and its associated closed-form solution) capable of
explaining this phenomena. The theory agrees well with experimental measurements and atomistic
calculations over a very wide range of conditions. Utilizing this theory, we are able to map out
three distinct regimes in which the critical tensile pressure for cavitation failure i) increases with
decreasing grain size in accordance with conventional wisdom, ii) non-intuitively decreases with
decreasing grain size, and iii) is independent of grain size. The theory also predicts microscopic
signatures of the cavitation process which agree with available data.

Cavitation instabilities may be induced in most forms
of matter, e.g. fluids [1, 2], polymers [3, 4], amorphous
solids [5–7], deuterated solvents [8], liquid helium [9], bio-
logical tissue [10], engineering materials [11], through the
rapid deposition of high-intensity energy, e.g. by impact
[11], laser irradiation [12], ultrasound [2], hydrodynamic
machinery [3], the snapping claw of the Alpheus hete-
rochaelis [13]. While many of these stimuli are somewhat
specialized, impact processes are ubiquitous throughout
nature: from the woodpecker (Picoides), whose skull and
beak have evolved over millennia to sustain 1000 g decel-
erations without inducing brain injury [14], to the plan-
etary and asteroidal impacts that have shaped our Solar
System [15], as well as in many modern technologies.

For a sufficiently energetic impact, shock compression
waves are generated at the impact source and propagate
throughout the impacting bodies. These shock waves in-
teract with surfaces and interfaces to produce complex
mechanical wave phenomena, which can cause regions
of the bodies to experience very high tensile pressures.
When subjected to this tensile pressure, many materials
tend to fracture by cavitation processes. This overall pro-
cess is commonly termed spall failure in the shock physics
community, and the maximum tensile pressure the ma-
terial may sustain before subsequent catastrophic frac-
ture is termed the spall strength [11]. While seemingly
specialized, such experiments are of fundamental inter-
ests as they probe cavitation processes on the ultra-short
timescales directly relevant to atomistic calculations.

Recently, a number of experimental studies [16–20]
have identified an anomalous grain size dependence, i.e. a
smaller is weaker behavior, in spall strength. Such obser-
vations are perplexing as they run counter to the typical
smaller is stronger size-effects observed in a range of ma-
terials and phenomena [21–23]. While smaller is weaker
anomalies have been observed [24–27] in materials with
extremely small grain sizes, e.g. a few nanometers; cav-
itation failure is unusual in that it exhibits this anoma-
lous behavior over a much larger range of grain sizes, e.g.
nanometers to millimeters.

For grain sizes, dG, larger than several nanometers size-
effects in strength generally scale according to the well-
known Hall-Petch law:

σy = σ0 +
ky√
dG

, (1)

where σy denotes the yield strength, a material prop-
erty characterizing the resistance to permanent plastic
deformation, and σ0 and ky are model parameters (e.g.
σ0 = 200 MPa and ky = 0.14 MPa

√
m for copper). In-

tuitively, Eq. (1) may lead one to presume that spall
strength, Σ∗

m, likely scales with grain size similarly to
yield strength, i.e. smaller is stronger ; however, exper-
imental measurements [16–20] show the opposite trend.
One extreme example of this non-intuitive grain size de-
pendence, i.e. ∂Σ∗

m/∂dG > 0, is the experimental ob-
servation that the spall strength of single crystal, i.e.
dG → ∞, copper is a factor of 2 − 3 higher [28] than
the spall strength of coarse-grained polycrystalline cop-
per with dG ∼ 100 µm (c.f. symbols in Fig. 1). Contra-
dictingly, atomistic calculations [29, 30] of spall strength
of nanocrystalline materials predict the more intuitively
expected smaller is stronger behavior, i.e. ∂Σ∗

m/∂dG < 0.
Here we derive the first quantitative theory capable of ex-
plaining these contradicting observations.
Consider an isolated, infinitesimally small spherical

cavity of radius A → 0 in an otherwise infinite elastic-
plastic medium whose resistance to elastic and plastic
deformation are characterized by the modulus of elastic-
ity, E, and the yield strength, i.e. σy in Eq. (1), respec-
tively. Extending a previous analysis [31] to account for
grain size here, the critical tensile pressure Ry required
to initiate growth of this infinitesimally small cavity is

Ry =
2

3

(

σ0 +
ky√
dG

){

1− ln
3

2

(

σ0

E
+

ky

E
√
dG

)}

, (2)

where Ry can be interpreted as the critical tensile pres-
sure required to initiate cavitation. The critical pressure
for cavitation scales similarly to the Hall-Petch law, i.e.
∂Ry/∂dG < 0; however, the scaling is a bit weaker, i.e.
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|∂Ry/∂dG| . |∂σy/∂dG|, due to the negative logarithmic
term in Eq. (2).
The derivation associated with Eq. (2) assumes a pre-

existing, albeit infinitesimally small, defect from which
cavitation is nucleated. Consider now a more homoge-
neous nucleation of free-volume that occurs when a per-
fect lattice is severely expanded to the point that the in-
termolecular forces holding the lattice together begin to
decrease with increasing lattice parameter. At this crit-
ical tensile pressure, Reos, the lattice becomes unstable.
Here we assume that the spall strength of any material
can not exceed this ideal spall strength, i.e. Σ∗

m ≤ Reos.
For typical metals, Reos is one or two orders of magni-

tude greater than Ry , e.g. the room-temperature value of
Reos was approximated to be 22.5 GPa for copper [32].
However, cavitation nucleation is likely to be a stochastic
process that at best may be bounded by these two ap-
proximations. Following this argument, we assume that
the critical nucleation pressure Rα

cr for any randomly se-
lected potential cavitation nucleation site associated with
the α-family of sites follows a bounded power-law prob-
ability distribution function:

gα(Rα
cr) = (βα − 1)

〈Rα
cr −Ry〉βα−1

(Reos −Ry)βα
, (3)

forRα
cr ≤ Reos with 〈·〉 denoting Macaulay brackets. The

associated cumulative distribution function is Gα(Rα
cr) =

〈Rα
cr−Ry〉βα/(Reos−Ry)

βα with βα denoting the power-
law exponent associated with the α-family of sites. We
choose βα = 3 and βα = 10, respectively, for families of
nucleation sites along grain boundaries and within grain
interiors. The rationale for this choice is the observation
that grain boundaries are preferred nucleation sites over
grain interiors at lower tensile pressures [33].
Once the cavitation process is initiated, unstable

growth of the cavity proceeds restrained only by the in-
ertial mass density (ρ = 8960 kg m−3 for copper) of the
solid material surrounding the cavity. Conservation of
radial momentum gives rise to the non-linear differential
equation governing the dynamic growth of an isolated
spherical cavity of radius a , i.e.

ρaä+
3

2
ρȧ2 = 〈Σm −Rα

cr〉, (4)

with Σm , −p. For a constant tensile pressure rate, e.g.
Σm = Σ̇mt with t denoting time, there exists an analytic
solution [31] of Eq. (4):

a =

√

8

33

〈Σm −Rα
cr〉

3

2

Σ̇m
√
ρ

. (5)

Following nucleation, the characteristic time tf required
for cavities to grow to a sufficient critical size af such that
they begin to coalesce and trigger catastrophic fracture is

tf ∼ 3

√

ρa2f/Σ̇m according to Eq. (5). For metals subject
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FIG. 1: Agreement of theory (lines), i.e. Eq. (10), with ex-
perimental measurements (open symbols) as well as atomistic
calculations (closed symbols) for high purity copper. The sin-
gle crystal −△− and coarse-grained polycrystal −#− exper-
imental data are reported in [28] and [12, 34], respectively.
The single crystal −⋆− and nanocrystalline − − atomistic
calculations are reported in [32] and [30], respectively.

to typical conditions: ρ ∼ O(104 kg m−3), af ∼ O(1

µm), and Σ̇m ∼ O(10−2−1 GPa/ns) implying tf ∼ O(1−
10 ns). For everyday life, this timescale is very short and
may be effectively treated as instantaneous. However,
for energetic impacts this timescale may be comparable
to timescales associated with expansion rates.
Consider now the simplest possible equation of state:

Σm = K0

∆ve
v0

, (6)

where K0 = 140 GPa denotes the bulk modulus (of cop-
per) at reference conditions, v0 denotes specific volume
at reference conditions, and ∆ve denotes the portion of
the change in specific volume, i.e. ∆v , v − v0, that
is elastically recoverable. Since cavitation involves the
generation of irrecoverable free-volume, a portion of the
change in specific volume is irrecoverable, i.e. ∆vp, with
∆v = ∆ve + ∆vp. Given a distribution of α̂ distinct
families of spherical cavities whose populations are gov-
erned by Eq. (3), the irrecoverable portion of the change
in specific volume may be expressed as

∆vp
vo

=
4

3
π

α̂
∑

α=1

Nα

∞
∫

0

a3gα(Rα
cr)dRα

cr, (7)

with Nα denoting the potential number of α-family cav-
itation nucleation sites per unit initial volume. For sim-
plicity, we limit ourselves here to α̂ = 2 with α = 1
and α = 2 representing nucleation sites at grain bound-
aries and grain interiors, respectively. For grain interiors,
we chose N2 = 5000 µm−3; however, the nucleation site
density associated with grain boundaries is expected to
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FIG. 2: Contour map demonstrating the anomalous grain
size dependence of spall strength as a function of expansion
rate as predicted by our theory, i.e. Eq. (10). The theoreti-
cally predicted trends agree with grain size dependence exper-
imental studies −3− and molecular dynamics studies −2−

reported in [16–20] and [29, 30], respectively. The thick white
lines partition the space into regions in which spall strength
i) follows Hall-Petch behavior, i.e. ∂Σ∗

m/∂dG < 0, ii) scales
inversely to Hall-Petch phenomena, i.e. ∂Σ∗

m/∂dG > 0, and
iii) insensitivity with respect to grain size, i.e. ∂Σ∗

m/∂dG ∼ 0.
Experimental data presented in Fig. (1) is shown as well.

roughly scale with the grain boundary surface areaO(d2G)
to grain volume O(d3G) ratio, i.e.

N1 = N0
GB × d0G

dG
, (8)

where N0
GB = 10 µm−3 denotes the grain boundary site

density for coarse-grained, i.e. d0G = 100 µm, copper.
Equations (4) and (6)–(8) now constitute a full set of

differential equations necessary to compute the isother-
mal equation of state (p − v − v̇ − T ) for a prescribed
expansion, i.e. v = f(t), with the maximum tensile pres-
sure achieved being the spall strength, Σ∗

m. Our the-
ory predicts that the spall strength of nanocrystalline
metals (dg ∼ 20 nm) is higher than single crystals (in
accordance with Hall-Petch behavior) at low expansion
rates; however, at higher expansion rates (& 106 − 107

s−1) the behavior non-intuitively reverses due to the
very low rate-sensitivity, i.e. m∗ , ∂ lnΣ∗

m/∂ ln(v̇/v0),
of nanocrystalline metals (see Fig. 1). A similar trend
has been experimentally measured for iron [35]. This low
rate-sensitivity m∗ is a direct consequence of the very
high number of grain boundary nucleation sites present
in nanocrystalline metals, which enable rapid stress re-
laxation. The theory also predicts a similar transition
in the spall strengths of coarse-grained polycrystals as
compared to nanocrystalline (see Fig. 1). While this
trend has yet to be experimentally confirmed, it is some-

what supported by the extrapolation of the data on iron
[35]. Lastly, the theory predicts the convergence of spall
strength of single crystals and coarse-grained polycrstals
at sufficiently high expansion rates (& 108 s−1), and per-
haps an achievement of the ideal spall strength at ul-
tra high expansion rates (& 109 s−1) where microstruc-
ture becomes irrelevant. Interestingly, grain size inde-
pendence has also been observed in growth dynamics of
Rayleigh-Taylor instabilities at ultra high pressures [36].
Figure 2 identifies three distinct regions: i) correspon-

dence with Hall-Petch behavior, i.e. ∂Σ∗

m/∂dG < 0, for
ultra-fine-grain sizes (dG ∼ 0.1 − 1 µm) at high expan-
sion rates (v̇/v0 ∼ 104 − 106 s−1) as well as nanocrys-
talline materials (dG . 100 nm) at extreme expansion
rates (v̇/v0 ∼ 106 − 108 s−1), ii) the non-intuitive, in-
verse Hall-Petch behavior, i.e. ∂Σ∗

m/∂dG > 0, for coarse-
grained (dG ∼ 100 µm) and fine-grained (dG ∼ 10 µm)
structures at high expansion rates as well as for ultra-
fine-grain sizes at extreme rates, and iii) insensitivity,
i.e. ∂Σ∗

m/∂dG ∼ 0, for coarse-grained and fine-grained
structures at ultra high expansion rates.
The remarkable agreement of this theory with both

experimental and atomistic calculations as demonstrated
by Figs. 1 and 2 validates our key assumptions and choice
of parameters. The microscopic information regarding
the total and relative number of cavities nucleated at
grain boundaries versus within grain interiors provides
a second layer of validation as well as deeper insights.
The number of α-family cavities nucleated per unit vol-
ume during cavitation may be determined from the as-
sociated cumulative distribution function, i.e. Nα

nuc =
NαGα(Σ

∗

m), and the total number density is denoted as

Nnuc ,
∑α̂

α=1
Nα

nuc. Figure 3 shows theory predictions
of the total number density Nnuc of nucleated cavities as
a function of grain size and the spall strength achieved.
Despite the simplistic nature of our theory, the predicted
number densities compare well to those of experimental
measurements. For example, [12, 16, 33] analyzed the
number density of cavities near spall fracture surfaces and
observed Nnuc ∼ O(10−2 − 10−1 µm−3) for polycrystals
(dG ∼ 100µm) that exhibited moderate spall strength,
i.e. Σ∗

m ∼ 1.5−2.5 GPa, andNnuc ∼ O(1 µm−3) for poly-
crystals exhibiting high spall strengths, i.e. Σ∗

m ∼ 5 − 9
GPa. Under similar conditions, our theory predicts val-
ues of Nnuc ∼ O(10−2 µm−3) and Nnuc ∼ O(1 µm−3),
respectively, c.f. Fig. 3. A significantly higher cavity
number density of Nnuc ∼ O(105 µm−3) has been re-
ported in atomistic calculations [30] for nanocrystalline
(dG ∼ 20 nm) copper exhibiting an extremely high spall
strength, i.e. Σ∗

m & 12 GPa, with our theory predicting
Nnuc ∼ O(104 µm−3) under these conditions, c.f. Fig. 3.
Lastly, the theory predicts the experimentally observed
[33] transition from predominantly transgranular fracture
to predominantly intergranular fracture with decreasing
grain size as indicated by partitioned regions of Fig. 3.
Deeper insights into the underlying physics govern-
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ing this complex behavior may be elucidated through a
closed-form approximate solution of Eqs. (4), (6), and (7)
by employing Eq. (5) as a sufficiently accurate approxi-
mation for a constant expansion rate, i.e.

∆vp
v0

=
κ̂v30c

3
B

v̇3K
9

2

0

α̂
∑

α=1

ζαNα

〈Σm −Ry〉βα+ 9

2

(Reos −Ry)βα
, (9)

with ζα = 2βα (βα − 1) Γ(βα)
∏βα

i=1
(9 + 2i)

−1
for βα 6= 1,

ζα = 1 for βα = 1, κ̂ , 4

3
π

(

8

33

)
3

2 , and cB ,
√

K0/ρ denot-
ing the bulk wave speed. The maximum tensile pressure,
i.e. Σm = Σ∗

m, is achieved at the tensile inflection point,
i.e. Σ̇m = 0. From time differentiation of Eq. (6) this
condition is met for ∆v̇e = 0, or equivalently v̇ = ∆v̇p.
Employing this condition along with time differentiation
of Eq. (9) it follows that

v̇

v0
= 3

√

√

√

√

κ̂c3B

K
7

2

0

α̂
∑

α=1

ζ̂αNα

〈ĉ∗α(Σ∗

m −Ry)〉βα+ 7

2

(Reos −Ry)βα
, (10)

with ζ̂α , (βα + 9/2) ζα and ĉ∗α , 9+2βα

7+2βα
being a fac-

tor that accounts for the softening generated by the fi-
nite, non-negligible value of −K0∆vp/v0 in Eq. (6) at
Σm = Σ∗

m. Neglecting the significant and non-intuitive
effects of grain size, a less general (effectively limited to
single crystals) and less accurate (ĉ∗α neglected) version
of Eq. (10) was previously derived [37]. Excellent agree-
ment between Eq. (10) and numerical solutions of our
theory are shown in [38].
If there happens to be a single dominant family of cav-

ities, i.e.
∆vp
vo

≈ 4

3
πNα

∫

∞

0
a3gα(Rα

cr)dRα
cr, then Eq. (10)

may be inverted, i.e.

Σ∗

m = Ry +
K0

ĉ∗α

β̂α

√

(Reos −Ry)βα

κ̂c3BK
βα

0 ζ̂αNα

(

v̇

v0

)
3

β̂α

, (11)

with β̂α , βα + 7

2
. Expressed in this form, the anoma-

lous grain size dependence may be understood better.
The first term on the right hand side of Eq. (11), i.e.
Ry, scales roughly as d

−1/2
G in accordance with Hall-Petch

phenomena. The second term scales with N−1/β̂α
α , which

according to Eq. (8) implies that this term scales as d
β̂α
G

when grain boundary nucleation sites dominate. In par-
ticular, for our choice of βα = 3 this second term scales
as d6.5

G . This competition is at the heart of the anomalous
grain size dependence associated with spall strength. A
similar competition between a size-dependent nucleation
criterion and time-dependent dynamics of cavity (defect)
volume growth may govern anomalous cavitation phe-
nomena in other forms of matter, e.g. [1, 2, 4, 6, 26], as
well as other relaxation processes [26, 36, 39].
In summary, we have derived the first physics-based

theory of cavitation in to explain the anomalous grain
size dependence of spall strength with minimal unknown
parameters, i.e. Nα and βα. In particular, we identify

FIG. 3: Contour map demonstrating the predicted total num-
ber of cavities nucleated per unit volume, Nnuc, as a function
of grain size and the spall strength achieved. The thick white
lines partition the space into regions that are i) predominantly
transgranular, i.e. N2

nuc/Nnuc & 95%, ii) predominantly inter-
granular, i.e. N1

nuc/Nnuc & 95%, and iii) mixed-mode.

three distinct regimes for which spall strength i) follows
Hall-Petch behavior, ii) scales inversely to Hall-Petch
phenomena due to the greater number density of nucle-
ation sites introduced by grain boundaries dominating
and iii) insensitivity with respect to grain size. Our the-
ory is particularly powerful as it unravels this anomalous
behavior prior to it being conclusively demonstrated by
experiments. Furthermore, it represents the first quan-
titative theory of metal cavitation that seamlessly con-
nects real-world experiments to atomistic calculations,
which often differ by one or two orders of magnitude.
The proposed theory may prove indispensable in bridging
the implications of atomistic calculations (computation-
ally limited to ultra-short timescales, i.e. nanoseconds)
of cavitation failure to more typical laboratory and engi-
neering conditions, thereby significantly increasing their
utility for design of novel materials.

This material is based upon work supported by Army
Research Laboratory under the MEDE Collaborative Re-
search Alliance through Grant No. W911NF-12-2-0022.
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