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A coordinate-invariant generalization of the Lyddane-Sachs-Teller relation is presented for polar
vibrations in materials with monoclinic and triclinic crystal systems. The generalization is derived
from an eigen dielectric displacement vector summation approach, which is equivalent to the mi-
croscopic Born-Huang description of polar lattice vibrations in the harmonic approximation. An
expression for a general oscillator strength is also described for materials with monoclinic and tri-
clinic crystal systems. A generalized factorized form of the dielectric response characteristic for
monoclinic and triclinic materials is proposed. The generalized Lyddane-Sachs-Teller relation is
found valid for monoclinic β-Ga2O3, where accurate experimental data became available recently
from a comprehensive generalized ellipsometry investigation [Physical Review B 93, 125209 (2016)].
Data for triclinic crystal systems can be measured by generalized ellipsometry as well, and are
anticipated to become available soon and results can be compared with the generalized relations
presented here.
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The Lyddane-Sachs-Teller (LST) relation1 sets two im-
portant ratios equal for a material with polar vibrations.
The square of the ratio of the frequency of longitudi-
nal optic lattice vibrations (phonons) (ωLO) to the fre-
quency of transverse optical lattice vibration (ωTO) for
long wavelengths, independent on the phonons’ displace-
ment vectors, equals the ratio of the dielectric permittiv-
ity at zero frequency εDC with the dielectric permittivity
at frequencies above the TO and LO vibrations where
the material is widely transparent (ε∞)2

εDC

ε∞
=

(

ωTO

ωTO

)2

. (1)

The LST relation is a fundamental statement, and can
be found in many text books on condensed matter physics
and semiconductor optics.3–11 The LST relation has been
used extensively, either to predict a missing parameter
out of the set of fundamental four, εDC, ε∞,ωLO,ωTO, or
to check for consistency among experimentally and/or
computationally obtained phonon mode and dielectric
permittivity parameters. The LST relation is playing a
crucial role in the understanding of the physics of ferro-
electric materials.12 For example, lattice instabilities in
ferroelectric13 perovskite titanates such as SrTiO3 and
(Ba,Sr)TiO3

14,15 across the phase transition affect static
dielectric constants and phonon modes. The LST rela-
tion has been expanded previously to include situations
where multiple branches of phonon modes occur, and the
role of poles and zeros in the complex plane to describe
the dielectric response functions was identified.16–18 A
generalization of the LST relation for arbitrary crystal
symmetry was derived by Cochran and Cowley (CC-
LST),19 which explicitly includes the phonon displace-
ment vector dependence

εDC,αα

ε∞,αα
=

N
∏

l=1

(

ω(α)LO,l

ω(α)TO,l

)2

, (2)

where α denotes a direction along a given Cartesian
axis, εDC,αα, ε∞,αα are diagonal tensor components of
the static and high-frequency dielectric permittivity (di-
electric function tensor, ε), respectively, and ω(α)TO,l

and ω(α)LO,l are the frequencies of N modes whose dis-
placements, transverse and longitudinal to their corre-
sponding wave vectors, respectively, are parallel to the α-
direction.19 Venkataraman, Feldkamp and Sahni later ex-
tended the CC-LST relation to arbitrary directions.3 The
CC-LST relation has been found correct for anisotropic
materials whose major axes of polarization align with
orthogonal axes.9,18,20 Such situations include materi-
als with cubic, hexagonal, trigonal, tetragonal, and or-
thorhombic crystal systems.21 Contemporary semicon-
ductor materials are cubic (for example, diamond struc-
ture silicon, and zincblende-structure group-III phos-
phides, arsenides and selenides), or hexagonal (for ex-
ample wurtzite-structure group-III nitrides). Very re-
cently, the monoclinic phase of metal-oxide β-Ga2O3

(gallia) has emerged as potential candidate for use in
high-power transistors and switches due to a very large
electric break down field value of 8 MVcm−1.22 First de-
vices exhibited excellent characteristics such as a nearly
ideal pinch-off of the drain current, an off-state break-
down voltage over 250 V, a high on/off drain current ra-
tio of around 104, and small gate leakage current.23 Few
reports exist on long wavelength characterization of mon-
oclinic LiAlSi2O6,24,25 MgCaSi2O6,26 CdWO4,27 CuO,28

MnWO4,29 and Y2SiO5,30 where the application of the
LST relation was not discussed. A generalized ellipsom-
etry analysis9 of phonon modes and free charge carrier
properties in β-Ga2O3 was reported very recently, and an
alternative approach to the LST relation was suggested
for materials with monoclinic symmetry.31 Virtually no
information is available on triclinic materials, and which
appears as a widely uncharted field of condensed matter
physics.
For mononclinic and triclinic systems, the CC-LST re-

lations become problematic because in general for such
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FIG. 1: Unit vector ê, characteristic for a dielectric eigen po-
larizability vibration Pê whose frequency response is rendered
by a complex-valued response function ϱ.

systems an α-direction cannot be found anymore along
which the displacement directions of multiple TO and LO
modes line up. For example, the displacement vectors of
all TO and LO modes within the monoclinic plane of β-
Ga2O3 each possess a different direction, which was ob-
tained from experiment and verified by density-functional
theory calculations.31 Furthermore, the ratios equaled in
Eq. (2) depend on the choice of the α-direction, and hence
the choice of coordinate system within which an experi-
mentally determined tensor ε is cast. Hence, the CC-LST
parameters ω(α)LO,l do not necessarily coincide with the
LO mode frequencies in crystals with monoclinic and tri-
clinic symmetries.32 The purpose of this present work
is to provide a generalization of the LST relation to a
coordinate-invariant form, which comprises the param-
eters of all long wavelength active phonon frequencies
regardless of their displacement directions. This form
is then applicable to any crystal symmetry, regardless
of the choice of the Cartesian coordinate system within
which the dielectric response is described. The paper
follows a derivation of a general expression of the dielec-
tric function tensor for materials with polar vibrations
in the harmonic approximation. A simple superposition
of eigen dielectric displacement polarizability functions
using Lorentzian oscillators and their displacement vec-
tor dependence leads to a coordinate-dependent tensor
description, from where a general, coordinate-invariant
LST relation is obtained. The oscillators approach is
equivalent to the result of the microscopic description of
the long wavelength lattice vibrations given by Born and
Huang in the harmonic approximation,33 where the inter-
atomic forces are considered constant and the equations
of motion are determined by harmonic potentials.

Vibration modes which can be excited by long wave-
length electromagentic waves (long wavelength active
phonon modes) in materials can be represented as intrin-
sic dielectric polarizations (eigen dielectric displacement
modes). Each mode produces an electric dipole charge
oscillation. The dipole axis can be associated with a char-
acteristic vector (unit eigen displacement vector êl). The
orientations of the N eigenvectors, êl, and the frequency
responses of their eigen displacements determine the op-
tical character of a given, dielectrically polarizable ma-

terial. For certain or all frequency regions, the optical
behavior may be isotropic, uniaxial, or biaxial.34 Within
the frequency domain, and within a Cartesian system
with unit axes x, y, z, the dielectric polarizability P
under the influence of an electric phasor field E along
êl = êx,lx + êy,ly + êz,lz is then given by a complex-
valued response function ϱl (Fig. 1)31

Pêl = ϱl(êlE)êl. (3)

Function ϱl must satisfy causality and energy conser-
vation requirements, i.e., the Kramers-Kronig (KK) in-
tegral relations and Im{ϱ} ≥ 0, ∀ ω ≥ 0.35,36 The
energy (frequency) dependent contribution to the long
wavelength polarization response of an uncoupled electric
dipole charge oscillation is commonly described using a
Kramers-Kronig consistent oscillator function9,37

ϱl (ω) =
Al

ω2
TO,l − ω2

, (4)

where Al and ωTO,l denote the amplitude and resonance
frequency parameters of a vibration mode with transverse
optical (TO) character, and ω is the frequency of the
driving electromagnetic field. The effect of mode damp-
ing (broadening) is omitted here for convenience, and it
can be shown that non-zero broadening does not change
the findings here.38 The eigenvectors are located along
certain, fixed spatial directions within a given sample of
material. Explicit coupling between different eigen dis-
placement modes, which may lead to description of chiral
properties, are ignored here. The linear polarization re-
sponse of a material with N eigen displacement modes is
then obtained from summation

P = χE =
N
∑

l=1

Pêl =
N
∑

l=1

Al(êl ⊗ êl)

ω2
TO,l − ω2

E, (5)

where ⊗ is the dyadic product.39 The index l numerates
the contributions of all independent dipole oscillations.
It is required here that ωTO,l > 0 ∀l.40 The field pha-
sors displacement D, and E are related by the dielectric
function tensor (ε0 is the vacuum permittivity)

D = ε0 (ε∞ + χE) = ε0εE, (6)

where a symmetric tensor ε∞ may account for the high
frequency appearance of ε. The high frequency limit here
is meant as a frequency region with frequencies suffi-
ciently large against the vibration modes summed over
in Eq. (5), and yet small against potential other elec-
tronic polarizabilities whose transition energies are at
even higher frequencies. The key leading to the LST rela-
tion is to inspect the determinant of the dielectric tensor,
det{ε(ω)}, for ω → 0 and for ω → ∞. Six real-valued
physical material parameters may be required to describe
the static (DC) behavior. At high frequencies, similarily
six frequency independent elements may be required
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det{ε(ω = 0)} = εDC,xxεDC,yyεDC,zz + 2εDC,xyεDC,yzεDC,xz − (εDC,xxε
2
DC,yz + εDC,yyε

2
DC,xz + εDC,zzε

2
DC,xy), (7)

det{ε∞} = ε∞,xxε∞,yyε∞,zz + 2ε∞,xyε∞,yzε∞,xz − (ε∞,xxε
2
∞,yz + ε∞,yyε

2
∞,xz + ε∞,zzε

2
∞,xy). (8)

According to Eq. (5) each element of ε possesses up to
(N+1) terms

(ε)ij = det{ε∞}êi,∞êj,∞ +
N
∑

l=1

ϱlêi,lêj,l, i, j ∈ {x, y, z}.

(9)
Hence, ε is symmetric, and a function of frequency ω.
At long wavelength and in the harmonic approximation,
all terms in Eq. (9) are independent on the magnitude of
the displacement, i.e., the strength and direction of the
electric field. The dielectric function tensor in Eq. (6)
has six independent complex-valued parameters (spec-
tra), which can be obtained by experiment, for example
using generalized spectroscopic ellipsometry.9,31,41 Two
characteristic sets of N optical modes, transverse optical
(TO; ωTO,l) and longitudinal optical (LO; ωLO,l), can be
obtained, respectively, from the roots of the determinants
of ε−1, and ε

0 = det{ε−1(ωTO,l)}, 0 = det{ε(ωLO,l)}, (10)

and a proof for this statement is obtained below. The
solutions of Eq. (10), the TO and LO mode of the
material rendered by ε(ω), are invariant under coordi-
nate rotation, e.g., described by rotation matrix A,9

since det{Aε(ω)A−1} = det{A} det{ε(ω)} det{A−1} =
det{ε(ω)}. The displacement vectors for the TO and LO
modes, êTO,l and êLO,l, respectively, are obtained from
the eigenvector solutions of Eq. (10)42

0 = ε−1(ωTO,l)êTO,l, 0 = ε(ωLO,l)êLO,l, (11)

and it can be shown that êTO,l are identical with êl in
Eq. (3). The LO mode displacement vectors, êLO,l, must
be obtained numerically, which requires explicit knowl-
edge of all tensor elements of ε(ω). The latter can be ob-
tained, for example, from density-functional perturbation
theory calculations,43 and from matching model equa-
tions using Eqs. (5)-(6) to experimental data.31 The dis-
placement vectors of all TO and LO modes is thereby de-
termined, and the index l unambiguously identifies mode
and vector via Eq. (11). However, vectors êTO,l and êLO,l

change upon coordinate rotation but as an entity, leav-
ing their relative orientation with each other unchanged.
Such coordinate rotation is equivalent to rotating a spec-
imen under investigation during experiment, or produc-
ing a surface with a different cut from a bulk crystal.
It is clear that the internal displacement vectors remain
their relative orientation while changing their overall ori-
entation with respect to a chosen Cartesian laboratory
coordinate system. For 0 < ω < ∞, one can express the
determinant of ε through a complex-valued function f ,
or f †

det{ε(ω)} = det{ε(∞)}+f(ω) = det{ε(∞)}
(

1 + f †(ω)
)

,
(12)

where f † is obtained from f by normalization with
det{ε(∞)}. The sum 1 + f † contains up to 6(1+N)3

terms. Each term has the following structure

êi,lêj,lϱ(l)êi,mêj,mϱ(m)êi,nêj,nϱ(n), (13)

where the mode indices are {l,m, n} ∈ {“∞”, 1, . . . , N},
and the coordinate indices are {i, j} ∈ {x, y, z}.44 In the
calculation of the determinant of ε all terms occur in
cyclic permutations of the indices and by alternating plus
and minus signatures of all product terms. It is crucial
to recognize that in this summation all terms with at
least two equal mode indices in l,m, n cancel out. As
a result, none of the terms in Eq. (9) occur in the sum
1 + f † with a multiplicity higher than one. This is con-
sequential when the sum 1 + f † is then factorized into a
fraction decomposition with common denominator. The
denominator then contains the product over all poles at
(ω2

TO,(l) − ω2) with l = 1, . . . , N . This result is obtained
straightforward by carrying out all multiplications and
by summing all terms in 1+f † for arbitrary but fixed N .
The numerator then presents itself with a polynomial in
ω2 with order equal to N . Hence, the numerator can be
factorized according to the Gauß-d’Alembert theorem of
algebra by which a polynomial p of degree n possesses n
roots in the complex plane.45 Hence, for the sum 1 + f †

one expects N roots in ω2, which are identical then with
the squares of the frequencies ωLO,(l) in Eq. (10). The
determinant of ε can be expressed as follows

det{ε(ω)} = det{ε(∞)}
N
∏

l=1

(

ω2
LO,l − ω2

ω2
TO,l − ω2

)

. (14)

and the statements in Eq. (10) can be easily verified.
The factorized form in Eq. (14) can be seen as a gen-
eralized, coordinate-invariant dielectric function, charac-
teristic for any given material regardless of its crystal
system. The particular usefulness of this function origi-
nates from its poles and zeros, which reveal all TO and
LO frequencies, respectively, of a material under inves-
tigation within the spectral range over which the indi-
vidual components of ε(ω) may have been determined,
either from computational theory or from experiment.
Function det{ε(ω)} furter factorizes into components for
higher symmetries, and which is not further discussed
here. Pavinich and Belousov suggested use of the sub-
determinant of the dielectric tensor within the a-c plane
for long wavelength phonon mode analysis of monoclinic
LiAlSi2O6.24 A derivation of the Pavinich and Belousov
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equation for monoclinic crystal systems is shown by Schu-
bert et. al ,31 and applied to β-Ga2O3. Setting ω = 0 in
Eq. (14), a generalization of the LST relation is then ob-
tained

det{ε(0)}

det{ε(∞)}
=

N
∏

l=1

(

ωLO,l

ωTO,l

)2

, (15)

where the product expands over all N vibration modes
contained within Eq. (5). Note that the displacement
vector for every TO and LO mode follows from Eq. (11),
and all of which may be different. Equations (14)
and (15) are the central results of this paper. The re-
lations are valid for materials with all crystal systems,
and specifically for triclinic. For monoclinic, when with-
out loss of generality the (x, y) plane may be considered
as the monoclinic plane, the LST relation is31

εDC,zz

ε∞,zz

εDC,xxεDC,yy − ε2
DC,xy

ε∞,xxε∞,yy − ε2∞,xy

=
N,K
∏

l=1,k=1

(

ωLO,l

ωTO,l

ωLO,k

ωTO,k

)2

,

(16)
where the products expand over all N modes l and K
modes k, respectively, with displacement parallel and
perpendicular to the monoclinic plane. Dividing Eq. (16)
by the CC-LST relation for α = z, the monoclinic LST
relation reduces to the form shown in Ref.31, and where
it was verified using experimentally determined param-
eters. For orthorhombic, the generalized LST relation
is

εDC,xx

ε∞,xx

εDC,yy

ε∞,yy

εDC,zz

ε∞,zz
=

M,N,K
∏

m=1,l=1,k=1

(

ωLO,m

ωTO,m

ωLO,l

ωTO,l

ωLO,k

ωTO,k

)2

,

(17)
where the products expand over all M modes m, N
modes l, and K modes k, respectively, with displacement
parallel to axis x, y, and z, respectively. Cyclic division
of Eq. (17) by the CC-LST relation, e.g., for α = x and y,
recovers Eq. (2), e.g., for α = z. Hexagonal, tetragonal
and trigonal follow from Eq. (17), where for example z
maybe chosen parallel to the c axis, and M + N modes
are polarized perpendicular to z, and K modes parallel
to z. For cubic, all modes N with displacement parallel
to x, y, and z have identical frequencies

(

εDC

ε∞

)3

=
N
∏

l=1

(

ωLO,l

ωTO,l

)6

, (18)

and which is the isotropic LST relation in 3 dimen-
sions. The latter is identical with Eq. (1), after tak-
ing the third root, for a material with cubic crystal sys-
tem and single-mode behavior, e.g., GaAs, where N=3,
A1=A2=A3=A, ê1||[1, 0, 0], ê2||[0, 1, 0], ê3||[0, 0, 1],

ωTO,1=ωTO,2=ωTO,3=ωTO, ωLO,1=ωLO,2=ωLO,3=ωLO, and
ω2

LO
=ω2

TO
+ A

ε∞
. Finally, a generalized, coordinate-

invariant oscillator strength which combines the polar-
izability of all long wavelength active vibration modes in
a given sample can be derived from Eq. (15)7,10,35

F = 3

√

√

√

√

(

det{ε(0)}

det{ε(∞)}
− 1

) N
∏

l=1

ω2
TO,(l), (19)

where the product runs over all N polar lattice modes.
The appearance of the third root in Eq. (19) reflects the
fact that the derivation comprises all modes in all three
dimensions. The value of Eq. (19) consists in the pos-
sibility to express a generalized, coordinate-invariant os-
cillator strength in units of the vacuum permittivity, ε0,
which can be calculated without explicit knowledge of
any LO frequency.
In a recent experiment, the dielectric function ten-

sor components of single crystal monoclinic β-Ga2O3

were measured by generalized ellipsometry in the long
wavelength spectral range.31 All long wavelength active
phonon modes predicted by theory were detected as well
as their eigen vectors within the monoclinic plane. The
tensors of the static and high frequency dielectric con-
stants were determined from experiment and the gener-
alized form of the LST relation was found fulfilled ac-
curately, lending experimental support to the findings
reported here. No other experimental data appear to be
available for materials with monoclinic or triclinic crys-
tal systems, and future experiments may provide further
tests of the LST relations provided here.
A coordinate-invariant generalization of the Lyddane-

Sachs-Teller relation is derived for polar vibrations in
materials with monoclinic and triclinic crystal systems.
The generalization is derived from an eigen displacement
vector summation approach, which is equivalent to the
microscopic Born-Huang description of polar lattice vi-
brations. The generalized relation is found valid for mon-
oclinic β-Ga2O3, where accurate experimental data be-
came available recently from a comprehensive general-
ized ellipsometry investigation. Data for materials with
triclinic crystal systems can be measured by generalized
ellipsometry as well, and are anticipated to become avail-
able soon and results can be compared with the general-
ized relation discussed here.
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