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A recent, intriguing paper by Hawking, Perry and Strominger suggests that soft photons and
gravitons can be regarded as black hole hair and may be relevant to the black hole information
paradox. In this note we make use of factorization theorems for infrared divergences of the S-matrix
to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of
the S-matrix becomes essentially trivial. The information paradox can be fully formulated in terms
of dressed hard states, which do not depend on soft quanta.

SOFT HAIR ON BLACK HOLES

An infinite number of asymptotic symmetries for grav-
ity and Abelian gauge theories were uncovered in the
last few year thanks to the work of several authors, es-
pecially A. Strominger [1–5]. A recent, intriguing pa-
per [6] by Hawking, Perry, and Strominger argues that
such new symmetries can be used to constrain the final
states resulting from black hole evaporation [7, 8], be-
yond the universal restrictions due to energy and charge
conservation. This fact is potentially relevant to the
black hole information paradox [9]. Two new ingredi-
ents enter in their discussion. The first one is the exis-
tence of the infinite-dimensional set of new symmetries
mentioned above. Each symmetry generates a conserved
charge. The second ingredient involves a clever use of
such charges to create new black hole states out of old
ones. The crucial claim of ref. [6] is that these new states
are distinguishable from the old ones.

By itself, the existence of new conserved charges does
not imply the existence of new black hole hair. In the spe-
cific case considered in [6], new U(1) asymptotic charges
are obtained by integrating a trivially conserved current,
J = ?d(ε?F ), over an appropriate Cauchy surface. In the
absence of black holes or massive charged states, the sur-
face can be pushed up to future null infinity I+ = R×S2.
When the scalar function ε is independent of the null
generator of I+, but has an arbitrary dependence on the
angular coordinates (z, z̄) of S2 ∈ I+, the charge is

Q =

∫
I+
d(ε ? F ) =

∫
I+
d̂ε ∧ ?F +

∫
I+
εd ? F (1)

The term QS ≡
∫
I+
d̂ε ? ∧F , where d̂ is the exterior

derivative on S2 ∈ I+, is the “soft charge” of ref. [3],
while QH =

∫
I+
εd ? F =

∫
I+
ε ? j is the hard charge.

The last equality uses of course Maxwell’s equations.

In the presence of a classical black hole, even in the
simplest case that no massive charged matter exists, I+

is no longer a Cauchy surface. On the other hand, a

black hole hair is an object defined on I+ (and not on
the horizon) that can be used to reconstruct the black
hole state. It is the total derivative nature of the current
J that makes Q a potential black hole hair. Namely, as
in the case of black hole electric charge and ADM mass,
Q can be written as a surface integral over the sphere at
spatial infinity, or I+− ,

Q = − lim
u→−∞

∮
ε ? F, (2)

where u is the retarded time. However, for a classical sta-
tionary black hole space-time all new charges are trivial
[10], as expected from black hole no-hair theorems.

Consider next a quantum black hole which evapo-
rates. Here the second ingredient in the Hawking-Perry-
Strominger mechanism enters and becomes essential. As
a warm-up example to the Hawking-Perry-Strominger
mechanism, let’s ask a simpler question:1 is the three-
momentum vector a black hole hair? Hawking, Perry,
and Strominger would argue that it is [6]. And indeed
it has an implication for Hawking evaporation. If the
early Hawking quanta, from an initially stationary black
hole, carry away total momentum P , then by momen-
tum conservation the resulting black hole must have a
nonzero momentum −P and so do the late Hawking
quanta. This is a source of correlation between the early
and late Hawking radiation, which makes the final state
less mixed than a thermal state. However, the correlation
is much too small to purify the Hawking radiation.

This simple fact can be related to the existence of a
symmetry operator that transforms the black hole state.
Suppose that after the emission of early quanta the ADM
mass of the black hole is M , and it is sufficiently large
that we can talk about a metastable state |M〉 with some
internal degrees of freedom, not explicitly shown in |M〉.
A moving black hole state can be obtained from the sta-
tionary one, described by |M〉, by a boost U(Λ), where

1 We thank Dan Harlow for suggesting this analogy to us.
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FIG. 1. In the presence of a classical black hole, the Cauchy
surface is I+∪H, but the charge Q is an asymptotic quantity,
as it can be written as a boundary integral at I+− . However,
Q = 0 for classical stationary black holes unless ε = constant,
in which case it is a multiple of the black hole electric charge.

Λ(M,0) = (
√
M2 + P 2,−P ). Lorentz symmetry implies

that the S-matrix S commutes with boosts, so, if |M〉
evaporates into S|M〉 ≡ |X〉, then

SU(Λ)|M〉 = U(Λ)S|M〉 = U(Λ)|X〉. (3)

The final state |X〉 can be expanded in terms of asymp-
totic states

|X〉 =
∑
b

SM→b|b〉, |b〉 =

m∏
i=1

a†pi,ζi |0〉 (4)

where b = {(p1, ζ1), · · · , (pm, ζm)} runs over outgoing
states and ζ characterizes their discrete quantum num-
bers. Applying U(Λ), the Hawking quanta which are
momentum eigenstates get boosted, while the vacuum is
boost invariant

U(Λ)|X〉 =
∑
b

SM→b|Λb〉, U(Λ)|0〉 = |0〉. (5)

Thus the late-time observer can distinguish |M〉 from
U(Λ)|M〉 by measuring the api,ζi quanta. Notice that
these are in general “hard,” since their momenta are

generic.
One can ask if super-translation symmetries [1, 2] and

their analog in electrodynamics [3] (hereafter denoted as
large U(1) symmetries) lead to additional hair in a similar
way. Naively, given that there are infinitely many con-
served charges (involving energy flux and electric charge
flux in every direction) then, depending on the angular
distribution of early quanta, there will exist very non-
trivial constraints on the late quanta. This would lead
to much larger correlations between late and early radi-
ation.

SHAVING OFF THE SOFT HAIR

We will now show that these conservation laws fix early
(late) soft radiation in terms of early (late) hard radia-
tion, but do not induce any cross correlation between
early and late quanta. The easiest way to see this is to
introduce a new basis of asymptotic states in which hard
particles are dressed with soft photons and gravitons. In
terms of this new basis, the soft part of the S-matrix be-
comes trivial and all conservation laws are automatically
satisfied.

First, choose an IR cutoff λ, much smaller than the
typical energy E of the particles involved in the pro-
cess. In the case of black holes, E is the Hawking tem-
perature. Write In and Out Hilbert spaces as products
H± = H±h ⊗ H±s where H+

s (H−s ) includes soft outgo-
ing (incoming) photons and gravitons with frequency less
than λ. Any In state can be written as a superposition
of states of the form |a〉|α〉, where a ∈ H−h labels the
momenta and quantum numbers of hard In states and
α ∈ H−s labels soft incoming photons/gravitons. Every
Out state is similarly written as |b〉|β〉.

The Weinberg soft theorems [11, 12] imply that, for
fixed initial (|a〉) and final (|b〉) hard states, the S-matrix
matrix factorizes into the product of:

1. A “hard” unitary matrix, Ŝ, which does not de-
pend on soft degrees of freedom. This means that
Ŝ acts as the unit matrix on the space of soft pho-
tons/gravitons.

2. Two “soft dressing” unitary matrices that act solely
on the space of soft photons and that depend on |a〉
and |b〉. 2

Explicitly:

〈β|〈b|S|a〉|α〉 = 〈b|Ŝ|a〉〈β|Ω(b)Ω†(a)|α〉 (6)

2 Factorization breaks down for large number of soft quanta, when
back-reaction becomes important. However, given that the total
emitted energy in soft radiation is much less than λ (by a factor
of α in electrodynamics and E2/M2

Pl in gravity), the probability
for large back-reaction is negligible and it vanishes in the limit
λ→ 0.
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where Ω = ΩphΩgr; the photon soft factor is given by

Ωph(a) ≡ exp
(
i

∫ λ d3k

(2π)32|k|∑
s

aph(k, s)ε∗µ(s,k)Jµ(−|k|,−k) + h.c.
)
,

(7)

aph(k, s) is the ladder operator for the free photon field
and

Jµ(|k|,k) = −i
∑
i∈a

Qip
µ
i

pi · k
, with kµ = (|k|,k). (8)

The graviton soft factor is

Ωgr(a) ≡ exp
(
i

∫ λ d3k

(2π)32|k|
∑
s

agr(k, s)ε
∗
µν(s,k)

Tµν(−|k|,−k) + h.c.
)
,

(9)

agr(k, s) is the ladder operator for the free graviton field
and

Tµν(|k|,k) = −iκ
2

∑
i∈a

pµi p
ν
i

pi · k
. (10)

To verify (6) note that Weinberg formula for the emission
of multiple soft photons/gravitons is of the form

Sb,β;a,α = Fb,β;a,αSb,0;a,0, (11)

where

Fb,β;a,α =
〈β|Ω(b)Ω†(a)|α〉
〈0|Ω(b)Ω†(a)|0〉 . (12)

So we define

Ŝb;a ≡
Sb,0;a,0

〈0|Ω(b)Ω†(a)|0〉 , (13)

in terms of which the connected S-matrix reads as (6).
Note that Ŝ is by construction independent of soft states.
Note also that dividing by the vacuum expectation value
〈0|Ω(b)Ω†(a)|0〉 in (13) cancels the IR divergences in
Sb,0;a,0.

The same techniques developed in [2–4] to establish
the equivalence of super-translation and large U(1) con-
servation laws with Weinberg soft formulas, can be used
to show that in massless QED

[QS ,Ω(a)] = Ω(a)
∑
i

Qiε(p̂i), (14)

and

QHa
†
pi,ζi
|0〉 = −Qiε(p̂i)a†pi,ζi |0〉, (15)

and as a result

QI+S = SQI− =
∑
a,b

|b〉〈a|〈b|Ŝ|a〉Ω(b)QSΩ†(a) (16)

for all large U(1) charges. Here we used the fact that

after antipodal matching of ε(z, z̄) on I+ and I−, QI+

S

and QI−

S are given by the same expressions in the Fock
space of photons. Similar results hold for massive QED
as well as gravitational scattering.

Conversely, the independence of Ŝ –defined as S mod-
ulo the soft factors Ω– from soft photon (or soft gravi-
ton) operators also follows directly from conservation of
the current J = ?d(ε ? F ). To prove that, it suffices
to consider parameters ε that depend on the null coor-
dinates u, v as εω(u, z, z̄) = exp(iωu)η(z, z̄) on I+ and
εω(v, z, z̄) = exp(iωv)η(z, z̄) on I−. Equation (1) be-
comes

Qω =

∫
I+
d(εω?F ) =

∫
I+
d̂εω∧?F+

∫
I+
εωd?F+

∫
I+
du∂uεω∧?F.
(17)

On I− a similar equation holds.
The last term in eq. (17) vanishes in the limits ω →

0±. This can be proven using |
∫
I+
du∂uεω ∧ ?F | =

|
∮
S2 ωηF̃ur|. The Fourer transform F̃ur of the field

strength Fur is L2 since
∮
S2

∫
dω|F̃ur|2 =

∮
S2

∫
dt|Fur|2,

by Parseval’s identity, and
∮
S2

∫
dt|Fur|2 ≤

∮
S2

∫
dtH <

∞. Here H is the EM energy density.
Conservation of Qω thus implies, after using (14) and

(15) and with obvious notation

lim
ω→0±

[Qω S , Ŝ] = 0. (18)

Now it suffices to recall [3, 4] that limω→0+ Qω S creates
a soft photon, while limω→0− Qω S annihilates it, to con-
clude that Ŝ commutes with all soft photon creation and
annihilation operators. By Shur’s lemma this means that
Ŝ is a constant on Fock space of the soft photons, since
that space is an irreducible representation of the canoni-
cal commutation relations.3

We introduce now a new basis of scattering states, ob-
tained from the old ones by dressing the hard particles
as [14]

||a, α〉〉 = Ω(a)|a〉|α〉, |a〉 ∈ H−h , |α〉 ∈ H−s . (20)

3 Refs. [3, 4] impose the weaker requirement that limω→0+
1
2

(Qω+
Q−ω) commute with the S-matrix. However, to derive the soft
theorem one has to use an additional identity, valid on a dense
subset of states:

lim
ω→0

aph(ωx̂,+)S = −Sa†ph(ωx̂,−). (19)

This identity follows from the absence of monopole interaction
[13]. Combined together they imply that both limω→0± Qω com-
mute with S.
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In this basis the soft part α evolves trivially and all dy-
namics is in the hard part:

〈〈b, β||S||a, α〉〉 = 〈b|Ŝ|a〉〈β|α〉. (21)

Working in this basis makes it clear that during the
Hawking evaporation (1) super-translation and large
U(1) symmetries put no constraint on the hard radia-
tion, and (2) for a big black hole early and late hard
quanta are separately accompanied by their own soft ra-
diation Ω(aearly) and Ω(alate). No information is carried
over from the early stage of evaporation to the later pe-
riod. In other words, the soft dynamics decomposes into
superselection sectors that never mix during time evolu-
tion.

ADDITIONAL REMARKS

The factorized S-matrix (21) also explains why nei-
ther electromagnetic nor gravitational memory can be
regarded as black hole hair. Imagine two black holes of
equal mass M ; one of them formed by colliding two high
energy photons along the x axis |px,−px〉 and the other
by the same collision along the y axis |py,−py〉. Accord-
ing to [15] this directional information can be retrieved
by looking at the soft gravitational emission |α〉 from the
formation process. Thus it seems that less information is
needed to be stored in black hole for the whole process
of black hole formation and evaporation to be unitary.

However, this argument ignores the possibility of hav-
ing soft incoming radiation. Once that is included, for
any observed gravitational memory |α〉 the kinematics of
hard incoming states remains completely undetermined.
In particular, the two initial states ||px,−px, α〉〉 and
||py,−py, α〉〉 produce mass-M black holes with identical
gravitational memories |α〉.

A generic state is an entangled superposition of soft
and hard states

|V 〉 =
∑
aα

C(a, α)||a, α〉〉, C(a, α) ∈ C, (22)

but any such entanglement cannot be used to extract in-
formation on the state |V 〉 using operators that act only
on hard modes. Specifically, a large U(1) transforma-
tion is a unitary operator U that, in the new basis of
dressed states {||a, α〉〉}, acts only on soft states; so, it
does not affect the matrix elements of any operator O
that depends only on hard quanta because U†OU = O.
In particular, 〈V |O|V 〉 = 〈V ′|O|V ′〉, |V ′〉 = U |V 〉. The
S-matrix, seems at first sight to mix hard and soft modes,
but in the basis of dressed states ||a, α〉〉, we have shown
that it also factorizes into the product of an operator act-
ing only on hard modes plus the identity operator acting
on soft modes in the basis {||a, α〉〉}.

It is worth expanding on the last remark and come to

the original analogy with Lorentz boosts, to ask what
is the fundamental difference between conservation laws
associated to super-translations (and large U(1)’s) and
momentum conservation. Note that after the emission of
early quanta, the remaining black hole is not just boosted
to cancel the net momentum transferred to the early ra-
diation. Due to the soft graviton/photon radiation, it is
also immersed in a vacuum with a different metric, and a
different Aµ configuration. Inside the light cone created
by the early soft radiation this is a pure gauge config-
uration which can be generated from the vacuum by a
large gauge transformation. Let us focus for simplicity
on the electromagnetic case and study the action of the
generator of the large U(1) transformations as in [6]

|M̃〉 = Q|M〉. (23)

The conservation of Q implies that |M̃〉 evaporates into
Q|X〉. However, we should now include the soft radiation
in |X〉:

Q|X〉 =
∑
b

ŜM→bQ||b, 0〉〉 =
∑
b

ŜM→b||b, α〉〉 (24)

where we used (14), (15), and their analogs, and we de-
fined:

|α〉 = QS |0〉. (25)

This is an exactly zero-frequency photon. In reality QS

is IR regulated by the distance that the early radiation
has traveled until the detection of late quanta.4 This
distance is much larger than the box over which the
late-time detector makes measurements. Hence, the late-
time observer has no way of distinguishing |α〉 from |0〉.
Therefore, unlike a boost, which transforms late Hawking
quanta but leaves the vacuum invariant, spontaneously
broken super-translations and large U(1)’s leave measur-
able Hawking quanta invariant and merely unobservably
transform the vacuum.

It is amusing to notice that here the factorization of
soft photons into superselection sectors is crucial to ex-
plain why the information paradox persists, while in the
context of the “baby universe” picture of black hole evap-
oration, advocated in [16, 17], a superselection-sector fac-
torization was crucial to that proposal for solving the
puzzle.

Various constructions of different types of soft hair
have been proposed in the literature. In particular, the
hair defined in [18] are effects due to the finite number of
quanta involved in a “corpuscolar” description of black
holes. The hair studied in [19], as well as those in [20],
are associated to symmetries of the horizon. The soft

4 Continuation of asymptotic charges to finite distance was dis-
cussed in [13].
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hair considered in this paper are instead specifically only
those connected with the large asymptotic U(1) (or BMS)
symmetries considered in [6].

A deep, extensive analysis of QED, which uses dressed
states similar to (20) and includes a construction of the
S-matrix, was given in a remarkable series of paper by
Kibble [21]. We thank A. Schwimmer for making us
aware of those paper. A similar construction of the S-
matrix using coherent states was proposed also in [22].
After this paper was posted to the archives, we received
the draft of a manuscript [23] that independently arrives
to conclusions similar to ours. We thank the authors for
sending it to us prior to publication.
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