Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories
Michael Schuler, Seth Whitsitt, Louis-Paul Henry, Subir Sachdev, and Andreas M. Läuchli
DOI: 10.1103/PhysRevLett.117.210401
Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories

Michael Schuler,1 Seth Whitsitt,2 Louis-Paul Henry,1 Subir Sachdev,2,3 and Andreas M. Läuchli1
1Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
2Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

(Dated: October 18, 2016)

The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for 2+1D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyse the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times $1/L$. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition, in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.

PACS numbers: 05.30.Rt, 11.25.Hf, 75.10.Jm, 75.40.Mg1

Introduction — Quantum critical points continue to attract tremendous attention in condensed matter, statistical mechanics and quantum field theory alike. Recent highlights include the discovery of quantum critical points which lie beyond the Ginzburg-Landau paradigm [1, 2], the striking success of the conformal bootstrap program for Wilson-Fisher fixed points [3], and the intimate connection between entanglement quantities and universal data of the critical quantum field theory [4–8].

A surprisingly little explored aspect in this regard is the finite (spatial) volume spectrum on numerically easily accessible geometries, such as the Hamiltonian spectrum on a 2D spatial torus at the quantum critical point [9]. In the realm of 1+1D conformal critical points there exists a celebrated mapping between the spectrum of scaling dimensions of the field theory in \mathbb{R}^2 and the Hamiltonian spectrum on a circle (spacetime cylinder: $S^1 \times \mathbb{R}$) [10]. This result is routinely used to perform accurate numerical spectroscopy of conformal critical points using a variety of numerical methods [11, 12]. In higher dimensions the situation is less favorable: Cardy has shown [13] that the corresponding conformal map can be generalized to a map between \mathbb{R}^d and $S^{d-1} \times \mathbb{R}$. While numerical simulations in this so-called radial quantization geometry have been attempted at several occasions [14–18], this numerical approach remains very challenging due to the curved geometry, which is inherently difficult to regularize in numerical simulations.

Although low-energy spectra on different toroidal configurations have been discussed in the context of some specific field theories (in Euclidean spacetime) [19–23], our understanding of critical energy spectra is rather limited beyond free theories [24–28]. This is due to the absence of a known relation between the scaling dimensions of the field theory and the torus energy spectra.

In this Letter we present a combined numerical and analytical study of the Hamiltonian torus energy spectrum of the 3D Ising conformal field theory (CFT), and show that it is accessible with finite lattice studies and proper finite-size scaling. Torus energy spectra provide a universal fingerprint of the quantum field theory governing the critical point and depend only on the universality class of the transition and on the shape and boundary conditions of the torus, which acts as an infrared (IR) cutoff (but not on the lattice discretisation, i.e. the ultraviolet cutoff). We will explicitly demonstrate this here for the Ising CFT. This approach will also be valuable as a new numerical tool to investigate and discriminate quantum critical points.

We provide a quantitative analysis of many low-lying energy levels of the standard \mathbb{Z}_2-symmetry breaking phase transition in the 3D Ising universality class. We also advocate a phenomenological picture that provides qualitative insight into the operator content of the critical point. As an application we reveal that the torus energy spectrum of the confinement transition between the \mathbb{Z}_2 topological ordered phase and the trivial (confined) phase of the Toric code (TC) in a longitudinal magnetic field can be understood as a specific combination of a subset of the fields and several boundary conditions of the standard 3D Ising universality class. Since the operator content of the partition function at criticality obviously differs from the standard 3D Ising universality class we term this transition a 3D Ising* transition [29–31].

3D Ising universality class — In order to demonstrate the universal nature of the low-energy spectrum we study the 2+1D transverse field Ising (TFI) model

$$H_{TFI} = -J \sum_{\langle i,j \rangle} \sigma^x_i \sigma^x_j - h \sum_i \sigma^z_i$$

(1)

on five different two-dimensional Archimedian lattices [32] at their respective quantum critical point [33][34]. In our finite size simulations the spatial setup is a torus whose linear extents are determined by two spanning vectors ω_1 and ω_2 (c.f. left part of Fig. 1). The finite area leads to a discrete momentum space (c.f. right part of Fig. 1) and is equivalent to an infrared cutoff in the field theory. The use of a lattice model on
lapses again with a finite gap above the ground state. At the quan-
tor respectively (both in the symmetric spatial representation),
we will multiply the excitation gaps with the mass scale set by the IR cutoff. To eliminate this scaling
finite gap above the ground state. At small h/J
state in the fully symmetric spatial representation, with a fi-
et lattices in the zero momentum sector
Γ = (0
ing and will call that the spectrum. In Fig. 2 we display the
representations of the lattice space group. In the paramag-
odd sectors (spin-flip symmetry), combined with irreducible
spins in total. The spectrum can be divided into Z_N
to preserve the microscopic
are simulated using a square (hexagonal IR-cutoff geometry
square-octagon (triangular, honeycomb and kagome) lattices
similar structure as the operator content of the quantum field
spatial group symmetry in
(6
size criticality in classical systems by others [38, 39]. The
key observation is that the zero mode of the field generates in-
time commutator $\phi(x,t), \Pi(\phi(x',t)) = i\delta^4(x - x')$, and specialize to the
right point, $s = s_c$, $u = u^*$. We generalize the two-
dimensional torus to arbitrary dimension by taking $d/2$
copies of the desired tori in Fig. 1, so that all spatial point
symmetries are preserved during the calculation and no extra
length scales are introduced.

Our approach to the critical theory in a finite volume origi-
nated from Lüscher [37], and was extended to deal with finite
criticality in classical systems by others [38, 39]. The
key observation is that the zero mode of the field generates in-
curable infrared divergences in perturbation theory, so it must
be separated and treated non-perturbatively. In the context of
the finite-size spectrum, this can be understood from Eq. (2)
by noticing that the Gaussian theory at $s = 0$ does not con-
tain any potential term for the zero mode, giving a continu-
ous spectrum, whereas any finite u will confine the zero mode
producing a discrete spectrum. Therefore, the correct pertur-
bative approach is to treat the momentum of the zero mode at
the same order as its interactions.

By splitting the fields in Eq. (2) and proper normalization of
the zero-mode terms the Hamiltonian can be decomposed
els and the three rightmost panels) agree to rather high preci-
sion with each other, when taking $1/N$ finite-size corrections
into account [35]. This means that - as is generally expected
from a field theory point of view - the obtained critical energy
spectra indeed do not depend on the chosen UV discretiza-
tion. In order to corroborate the extrapolations based on ED
we performed extensive Quantum Monte Carlo (QMC) simu-
lations [33] of the transverse field Ising model at the critical
point for all five lattices. Based on imaginary time spin-spin
 correlations it is possible to access the finite size gaps on lat-
tices up to $N = 30 \times 30$ lattice sites [36]. These data points
(red small filled circles) in Fig. 2 reproduce the ED data where
available, and allow us to confirm and sharpen the precision
of the extrapolated energy spectrum. Based on the quantum
numbers of the first few low-lying energy levels we choose to
label them as torus analogues of the spectrum of scaling di-
ensions of the 3D Ising CFT: σ_T and σ_T' refer to the first
two levels in the Z_2 odd sector in the spatially symmetric rep-
resentation, while ϵ_T is the first excited state (above the vac-
uum 1) in the Z_2 even and spatially symmetric sector. The
"... + $\Delta \kappa$" label refers to levels at the first momentum away
from the Γ point, $\kappa = 1$. These levels are four-fold degene-
rate on the square torus, while they are six-fold degenerate for the hexagonal torus. Although there is no known relation
between the torus spectrum and the scaling dimensions in flat
space, this phenomenological approach shows a qualitatively
similar structure as the operator content of the quantum field
theory.

$ \epsilon $-expansion — We also compute the energy levels using $ \epsilon $-expansion. Our starting point is $ \phi^4 $ theory, which we define
by the Hamiltonian density

$$
\mathcal{H} = \int d^d x \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{s}{2} \phi^2 + \frac{u}{4!} \phi^4 \right] \tag{2}
$$

in d dimensions with the equal-time commutator $[\phi(x,t), \Pi(x',t)] = i\delta^d(x - x')$, and specialize to the
critical point, $s = s_c$, $u = u^*$. We generalize the two-
dimensional torus to arbitrary dimension by taking $d/2$
copies of the desired tori in Fig. 1, so that all spatial point
symmetries are preserved during the calculation and no extra
length scales are introduced.

Our approach to the critical theory in a finite volume origi-
nated from Lüscher [37], and was extended to deal with finite
criticality in classical systems by others [38, 39]. The
key observation is that the zero mode of the field generates in-
curable infrared divergences in perturbation theory, so it must
be separated and treated non-perturbatively. In the context of
the finite-size spectrum, this can be understood from Eq. (2)
by noticing that the Gaussian theory at $s = 0$ does not con-
tain any potential term for the zero mode, giving a continu-
ous spectrum, whereas any finite u will confine the zero mode
producing a discrete spectrum. Therefore, the correct pertur-
bative approach is to treat the momentum of the zero mode at
the same order as its interactions.

By splitting the fields in Eq. (2) and proper normalization of
the zero-mode terms the Hamiltonian can be decomposed

\begin{align*}
\text{Hamiltonian} & = \int d^d x \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{s}{2} \phi^2 + \frac{u}{4!} \phi^4 \right] \\
\text{Critical Point} & = s = s_c, u = u^* \\
\text{Generalization} & = d/2 \\
\text{Finite-Sized Correction} & = \Delta \kappa \\
\text{Final Result} & = \text{Experimental Data} \\
\end{align*}
into a quadratic part H_0 describing the Fock spectrum of the finite-momentum modes, and an interaction part V containing all zero-mode contributions and non-linearities.

At zeroth order, our states are given by finite momentum Fock states multiplied by arbitrary functionals of the zero mode, so these states are infinitely degenerate. We then derive an effective Hamiltonian within each degenerate subspace using a perturbation method due to C. Bloch [40]. This effective Hamiltonian acts in a degenerate subspace, but its eigenvalues correspond to the exact eigenvalues of the original Hamiltonian to desired order. It turns out, that the effective Hamiltonians take the form of a strongly-coupled oscillator with coefficients depending on the degenerate subspaces. The coefficients of the more complicated expansion for the energy levels (expansion in $\epsilon^{1/3}$) can be found in [41]. In addition, the effective Hamiltonian will couple different Fock states with the same energy and momentum whenever possible, leading to off-diagonal terms. These off-diagonal terms were computed numerically from the unperturbed wave-function. Further details about the ϵ-expansion approach can be found in the Supplemental Material [42].

In Fig. 3 we show the universal torus spectrum obtained from ϵ-expansion for the two choices of τ and compare it to numerical results from ED/QMC [43] normalized by the speed of light c [44][45]. We observe a remarkable agreement between the two different methods. This further illustrates the interpretation of the torus spectra as a universal fingerprint of the critical field theory and their accessibility from numerical finite lattice simulations. The larger discrepancies between numerical and ϵ-expansion data for some higher levels in the spectrum may result from the extrapolation to the thermodynamic limit using only ED data with strong finite-size effects, especially for $\kappa > 0$ [46].

2+1D Ising* universality class — In this section we are investigating the confinement transition of a \mathbb{Z}_2 spin liquid. Such a topological quantum phase transition is characterized by the lack of any local order parameters. \mathbb{Z}_2 spin liquids are characterized by the presence of two bosons, the e and m particles. These fractionalized particles can only be created in pairs and obey mutual anyonic statistics. The confinement transition can then be driven by condensing either the e or the m particles. Without loss of generality, we will consider the condensation of the m particles and call it’s corresponding field ϕ. The critical theory turns out to be $Ising^*$. ϕ can only be created in pairs, so the effective Lagrangian must be even in a real field ϕ, implying we should only include \mathbb{Z}_2 even states in a critical Ising theory. In addition, ϕ and $-\phi$ are physically indistinguishable, and so both periodic and anti-periodic boundary conditions have to be considered. We emphasize that this mapping is independent of any specific microscopic lattice model and should hold generically between universal theories and their topological counterparts.

As a microscopic model illustrating this transition we study the critical energy spectrum of the Toric Code Hamiltonian...
perturbed by a longitudinal field [47–51]:
\[H_{TC} = -J \sum_s A_s - J \sum_p B_p - h \sum_i \sigma_i^z \]
(3)

The \(\sigma_i \) describe \(S = 1/2 \)-spins on the \(2N \) edges of a square lattice, \(p \) denotes a plaquette and \(s \) a star on the lattice. All \(A_s \) and \(B_p \) commute with each other and so the model can be solved analytically for \(h = 0 \) by setting \(A_s = 1 \) \(\forall s \) and \(B_p = 1 \) \(\forall p \) [52]. On a torus the ground state manifold is, however, four-fold degenerate and can be characterized by the eigenvalues \(\pm 1 \) of Wilson loops winding around the torus. An \(e \) (or) particle is described by setting \(A_s = -1 \) \((B_p = -1) \) on a star (plaquette). The longitudinal field introduces a dispersion for the \(m \) particles which finally condense and drive the phase transition at \(h = h_c \) by confinement of the \(e \) particles [29–31, 47].

The above considerations regarding the relationship between Ising and Ising* QFT can be made very explicit for the Toric Code. The Toric Code Eq. (3) in the sector without \(e \) particles \((A_s = 1 \ \forall s) \) can be exactly mapped to an even TFI model on the dual square lattice with \(N \) sites, where only the even spin-flip sector is present [47, 53, 54]. The groundstate manifold, described by the eigenvalues of the Wilson loops, maps to both, periodic and anti-periodic boundary conditions of the Ising model [55]. In the following we will make use of this mapping to compute the finite-size torus spectrum of the Ising* transition for \(\tau = i \) using ED.

In the left part of Fig. 4 we present the low-energy finite-size spectrum of the Ising* transition obtained with ED simulations. The spectrum is rescaled with the same factor \(\Delta_0 \) as in Fig. 2 such that they can be easily compared. The relationship between the critical Ising and Ising* theories results in the fact that the levels called \(\varepsilon_T(\pm\Delta\kappa) \) in Fig. 2 are identically present in the Ising* spectrum (c.f. P/P levels in Fig. 4). The most remarkable feature, however, is the presence of very low-lying levels in the spectrum. They arise from the ground-state manifold in the spin-liquid phase, where their splitting exponentially scales to zero with \(N \). At criticality they, however, scale as \(1/\sqrt{N} \) as the entire low-energy spectrum. The small relative splitting of the four lowest levels is surprisingly small. The right panel of Fig. 4 shows a comparison of the universal torus spectrum for an Ising* transition obtained with ED and \(\epsilon \)-expansion similar to Fig. 3 [56]. A zoom into the conspicuous low-energy levels is shown in the inset. Again we observe a decent agreement of the different methods.

Conclusions — We have computed the universal torus energy spectrum for the Ising and Ising* transitions in 2+1D providing a characteristic fingerprint of the corresponding conformal field theories and have highlighted the implications of a neighbouring \(Z_2 \) spin liquid on the torus spectrum. Additionally, we have highlighted a phenomenological picture based on the quantum numbers of the individual energy levels which shows a structure qualitatively similar to the operator content of the field theory in flat space. Using the numerical and analytical technology presented in this paper it will be possible to inspect and chart the characteristic spectrum of more complex quantum critical points, such as \(O(N) \) Wilson-Fisher fixed points, Gross-Neveu-Yukawa type phase transitions in interacting Dirac fermion models [57, 58] or designer Hamiltonians displaying deconfined criticality [2].

A.M.L. thanks R.C. Brower, J.L. Cardy and A.W. Sandvik for discussions. L.-P.H. and M.S. acknowledge support through the Austrian Science Fund SFB FoQuS (F-4018). S.W. and S.S. are supported by the U.S. NSF under Grant DMR-1360789. We thank A. Wietek for his help on computing large-scale ED results. The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). This work was supported by the Austrian Ministry of Science BMWF as part of the Uninfrastrukturprogramm of the Focal Point Scientific Computing at the University of Innsbruck. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.

[9] In a corresponding classical statistical mechanics language, we are discussing the spectrum of the logarithm of the transfer matrix in the limit of an infinitely long square (or hexagonal) rod (c.f. left part of Fig. 1). The transfer matrix acts along the infinite rod direction.

[34] We have computed the critical point for the Square-Octagon lattice as $(h/J)c = 2.087(7)$ using a continuous-time QMC algorithm similar to that of [33].

[36] See Supplemental Material for further details about the used gap estimation procedure for QMC.

[42] See Supplemental Material, which includes Refs. [38, 40, 59–61].

See Supplemental Material, which includes Refs. [26, 44] for the details on the determination of c.

For further studies it is worth noticing that ε-expansion tends to overestimate the κ = 0 levels while levels with κ > 0 are commonly underestimated.

See Supplemental Material for a detailed discussion of the mapping.

See Supplemental Material for a listing of the complete low-energy torus spectra for the Ising* transition from numerics and ε-expansion.

