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The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magneti-
cally ordered and gapped topological phases. However, the spectra at quantum critical points separating such
phases are largely unexplored for 2+1D systems. Using a combination of analytical and numerical techniques,
we accurately calculate and analyse the low-energy torus spectrum at an Ising critical point which provides a
universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers
times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the
Ising* transition, in the example of the toric code in a longitudinal field, and advocate a phenomenological
picture that provides qualitative insight into the operator content of the critical field theory.
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Introduction — Quantum critical points continue to at-
tract tremendous attention in condensed matter, statistical me-
chanics and quantum field theory alike. Recent highlights in-
clude the discovery of quantum critical points which lie be-
yond the Ginzburg-Landau paradigm [1, 2], the striking suc-
cess of the conformal bootstrap program for Wilson-Fisher
fixed points [3], and the intimate connection between entan-
glement quantities and universal data of the critical quantum
field theory [4–8].

A surprisingly little explored aspect in this regard is the fi-
nite (spatial) volume spectrum on numerically easily acces-
sible geometries, such as the Hamiltonian spectrum on a 2D
spatial torus at the quantum critical point [9]. In the realm of
1+1D conformal critical points there exists a celebrated map-
ping between the spectrum of scaling dimensions of the field
theory in R2 and the Hamiltonian spectrum on a circle (space-
time cylinder: S1 × R) [10]. This result is routinely used to
perform accurate numerical spectroscopy of conformal criti-
cal points using a variety of numerical methods [11, 12]. In
higher dimensions the situation is less favorable: Cardy has
shown [13] that the corresponding conformal map can be gen-
eralized to a map between Rd and Sd−1 × R. While numeri-
cal simulations in this so-called radial quantization geometry
have been attempted at several occasions [14–18], this numer-
ical approach remains very challenging due to the curved ge-
ometry, which is inherently difficult to regularize in numerical
simulations.

Although low-energy spectra on different toroidal configu-
rations have been discussed in the context of some specific
field theories (in Euclidean spacetime) [19–23], our under-
standing of critical energy spectra is rather limited beyond free
theories [24–28]. This is due to the absence of a known rela-
tion between the scaling dimensions of the field theory and the
torus energy spectra.

In this Letter we present a combined numerical and ana-
lytical study of the Hamiltonian torus energy spectrum of the
3D Ising conformal field theory (CFT), and show that it is ac-

cessible with finite lattice studies and proper finite-size scal-
ing. Torus energy spectra provide a universal fingerprint of
the quantum field theory governing the critical point and de-
pend only on the universality class of the transition and on
the shape and boundary conditions of the torus, which acts as
an infrared (IR) cutoff (but not on the lattice discretisation,
i.e. the ultraviolet cutoff). We will explicitly demonstrate this
here for the Ising CFT. This approach will also be valuable as
a new numerical tool to investigate and discriminate quantum
critical points.

We provide a quantitative analysis of many low-lying en-
ergy levels of the standard Z2-symmetry breaking phase tran-
sition in the 3D Ising universality class. We also advocate
a phenomenological picture that provides qualitative insight
into the operator content of the critical point. As an applica-
tion we reveal that the torus energy spectrum of the confine-
ment transition between the Z2 topological ordered phase and
the trivial (confined) phase of the Toric code (TC) in a longitu-
dinal magnetic field can be understood as a specific combina-
tion of a subset of the fields and several boundary conditions
of the standard 3D Ising universality class. Since the operator
content of the partition function at criticality obviously dif-
fers from the standard 3D Ising universality class we term this
transition a 3D Ising* transition [29–31].

3D Ising universality class — In order to demonstrate
the universal nature of the low-energy spectrum we study the
2+1D transverse field Ising (TFI) model

HTFI = −J
∑
〈i,j〉

σz
i σ

z
j − h

∑
i

σx
i (1)

on five different two-dimensional Archimedian lattices [32] at
their respective quantum critical point [33][34]. In our finite
size simulations the spatial setup is a torus whose linear ex-
tents are determined by two spanning vectors ω1 and ω2 (c.f.
left part of Fig. 1). The finite area leads to a discrete momen-
tum space (c.f. right part of Fig. 1) and is equivalent to an in-
frared cutoff in the field theory. The use of a lattice model on
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FIG. 1. The two torus geometries with 4-fold and 6-fold rota-
tion symmetry and their momentum-space grid in the vicinity of
the Γ = (0, 0) point. In the center of the lower row we display
the Wigner-Seitz cell of the torus, highlighting the 6-fold symmetry.
The momentum space variable κ is defined as κ = L

2π
|k|τ2 with

τ = τ1 + iτ2, L = |ω1| = |ω2| and k a momentum of the finite-size
cluster.

the other hand leads to an ultraviolet (UV) cutoff in the form
of a Brillouin zone. In the following we will only consider tori
with L = |ω1| = |ω2| and two different choices of the modu-
lar parameter τ = ω2/ω1: τ = i (τ = 1/2 +

√
3/2i) corre-

sponding to a square (hexagonal) symmetry. The square and
square-octagon (triangular, honeycomb and kagome) lattices
are simulated using a square (hexagonal) IR-cutoff geometry
to preserve the microscopic C4 (C6) point group symmetry in
the IR.

In a first step we have calculated the low-energy spectrum
of the Hamiltonian Eq. (1) using exact diagonalization (ED)
in all symmetry sectors on finite samples with up to N = 40
spins in total. The spectrum can be divided into Z2 even and
odd sectors (spin-flip symmetry), combined with irreducible
representations of the lattice space group. In the paramag-
netic phase at large h/J one finds a unique Z2 even ground
state in the fully symmetric spatial representation, with a fi-
nite gap above the ground state. At small h/J one finds two
quasi-degenerate ground states in the Z2 even and odd sec-
tor respectively (both in the symmetric spatial representation),
again with a finite gap above the ground state. At the quan-
tum critical point (h/J)c however the low-lying spectrum col-
lapses as 1/

√
N ∼ 1/L, i.e. it exhibits a mass spectrum with

the mass scale set by the IR cutoff. To eliminate this scaling
we will multiply the excitation gaps with

√
N in the follow-

ing and will call that the spectrum. In Fig. 2 we display the
finite size spectra at the Ising critical point for all five differ-
ent lattices in the zero momentum sector Γ = (0, 0), as well
as the first momentum away from the Γ point (κ = 1 in the
right part of Fig. 1). Since the speed of light is not known
at this stage, the spectrum for each lattice has been globally
rescaled such that the extrapolated energy of the first excited
level (which is Z2 odd and spatially symmetric) is set to one.
One explicitly observes that the critical energy spectra of lat-
tices with the same type of IR cutoff τ (the two leftmost pan-

els and the three rightmost panels) agree to rather high preci-
sion with each other, when taking 1/N finite-size corrections
into account [35]. This means that - as is generally expected
from a field theory point of view - the obtained critical energy
spectra indeed do not depend on the chosen UV discretiza-
tion. In order to corroborate the extrapolations based on ED
we performed extensive Quantum Monte Carlo (QMC) simu-
lations [33] of the transverse field Ising model at the critical
point for all five lattices. Based on imaginary time spin-spin
correlations it is possible to access the finite size gaps on lat-
tices up to N = 30 × 30 lattice sites [36]. These data points
(red small filled circles) in Fig. 2 reproduce the ED data where
available, and allow us to confirm and sharpen the precision
of the extrapolated energy spectrum. Based on the quantum
numbers of the first few low-lying energy levels we choose to
label them as torus analogues of the spectrum of scaling di-
mensions of the 3D Ising CFT: σT and σ′T refer to the first
two levels in the Z2 odd sector in the spatially symmetric rep-
resentation, while εT is the first excited state (above the vac-
uum 1) in the Z2 even and spatially symmetric sector. The
”. . . + ∆κ” label refers to levels at the first momentum away
from the Γ point, κ = 1. These levels are four-fold degen-
erate on the square torus, while they are six-fold degenerate
for the hexagonal torus. Although there is no known relation
between the torus spectrum and the scaling dimensions in flat
space, this phenomenological approach shows a qualitatively
similar structure as the operator content of the quantum field
theory.
ε-expansion — We also compute the energy levels using

ε-expansion. Our starting point is φ4 theory, which we define
by the Hamiltonian density

H =

∫
ddx

[
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4!
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]

(2)

in d dimensions with the equal-time commutator
[φ(x, t),Π(x′, t)] = iδd(x − x′), and specialize to the
critical point, s = sc, u = u∗. We generalize the two-
dimensional torus to arbitrary dimension by taking d/2
copies of the desired tori in Fig. 1, so that all spatial point-
symmetries are preserved during the calculation and no extra
length scales are introduced.

Our approach to the critical theory in a finite volume origi-
nated from Lüscher [37], and was extended to deal with finite
size criticality in classical systems by others [38, 39]. The
key observation is that the zero mode of the field generates in-
curable infrared divergences in perturbation theory, so it must
be separated and treated non-perturbatively. In the context of
the finite-size spectrum, this can be understood from Eq. (2)
by noticing that the Gaussian theory at s = 0 does not con-
tain any potential term for the zero mode, giving a continu-
ous spectrum, whereas any finite u will confine the zero mode
producing a discrete spectrum. Therefore, the correct pertur-
bative approach is to treat the momentum of the zero mode at
the same order as its interactions.

By splitting the fields in Eq. (2) and proper normalization
of the zero-mode terms the Hamiltonian can be decomposed



3

0.00 0.02 0.04 0.06 0.08 0.10

1/N

0

2

4

6

8

(E
−
E

0
)
×
√
N
/∆

0

σT (1.00)

σ′T (6.87)

σT + ∆κ (5.32)

1

εT (3.69)

εT + ∆κ (7.46)

τ = i - Square

0.00 0.02 0.04 0.06 0.08 0.10

1/N

σT (1.00)

σ′T (7.01)

σT + ∆κ (5.41)

εT + ∆κ (7.56)

1

εT (3.78)

τ = i - Square-Octagon

0.00 0.02 0.04 0.06 0.08 0.10

1/N

σT (1.00)

σ′T (6.93)

σT + ∆κ (5.77)

1

εT (3.73)

εT + ∆κ (7.82)

τ = 1
2 +

√
3

2 i - Triangular

0.00 0.02 0.04 0.06 0.08 0.10

1/N

σT (1.00)

σ′T (6.99)

σT + ∆κ (5.72)

1

εT (3.76)

εT + ∆κ (7.84)

τ = 1
2 +

√
3

2 i - Honeycomb

0.00 0.02 0.04 0.06 0.08 0.10

1/N

σT (1.00)

σ′T (6.91)

σT + ∆κ (5.74)

1

εT (3.73)

εT + ∆κ (7.81)

τ = 1
2 +

√
3

2 i - Kagome

κ = 0, Z2 even κ = 0, Z2 odd κ = 1, Z2 even κ = 1, Z2 odd QMCκ = 0, Z2 even κ = 0, Z2 odd κ = 1, Z2 even κ = 1, Z2 odd QMCκ = 0, Z2 even κ = 0, Z2 odd κ = 1, Z2 even κ = 1, Z2 odd QMCκ = 0, Z2 even κ = 0, Z2 odd κ = 1, Z2 even κ = 1, Z2 odd QMCκ = 0, Z2 even κ = 0, Z2 odd κ = 1, Z2 even κ = 1, Z2 odd QMC

FIG. 2. Normalized low-energy torus spectrum for the Ising QFT for the modular parameters τ = i and τ = 1/2 +
√

3/2i obtained with ED
(large symbols) and QMC (small red filled circles). Filled (empty) symbols denote Z2 even (odd) levels. Linear fits in 1/N for levels with
κ = 0 (κ = 1) are shown by blue solid (green dashed) lines (cf. color coding in Fig. 1) and the values of the fields after extrapolation to the
thermodynamic limit 1/N → 0 are given in parentheses. The normalization constant ∆0 is chosen such that the first Z2 odd level extrapolates
to one. We observe a universal torus spectrum for the lattices with the same type of IR cutoff (same τ ).

into a quadratic part H0 describing the Fock spectrum of the
finite-momentum modes, and an interaction part V containing
all zero-mode contributions and non-linearities.

At zeroth order, our states are given by finite momentum
Fock states multiplied by arbitrary functionals of the zero
mode, so these states are infinitely degenerate. We then derive
an effective Hamiltonian within each degenerate subspace us-
ing a perturbation method due to C. Bloch [40]. This effective
Hamiltonian acts in a degenerate subspace, but its eigenvalues
correspond to the exact eigenvalues of the original Hamilto-
nian to desired order. It turns out, that the effective Hamilto-
nians take the form of a strongly-coupled oscillator with co-
efficients depending on the degenerate subspaces. The coeffi-
cients of the more complicated expansion for the energy levels
(expansion in ε1/3) can be found in [41]. In addition, the ef-
fective Hamiltonian will couple different Fock states with the
same energy and momentum whenever possible, leading to
off-diagonal terms. These off-diagonal terms were computed
numerically from the unperturbed wave-function. Further de-
tails about the ε-expansion approach can be found in the Sup-
plemental Material [42].

In Fig. 3 we show the universal torus spectrum obtained
from ε-expansion for the two choices of τ and compare it
to numerical results from ED/QMC [43] normalized by the
speed of light c [44][45]. We observe a remarkable agreement
between the two different methods. This further illustrates the
interpretation of the torus spectra as a universal fingerprint of
the critical field theory and their accessability from numerical
finite lattice simulations. The larger discrepancies between
numerical and ε-expansion data for some higher levels in the
spectrum may result from the extrapolation to the thermody-
namic limit using only ED data with strong finite-size effects,
especially for κ > 0 [46].

2+1D Ising* universality class — In this section we are
investigating the confinement transition of a Z2 spin liquid.
Such a topological quantum phase transition is characterized
by the lack of any local order parameters. Z2 spin liquids
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FIG. 3. Universal torus spectra for the Ising QFT for the modular
parameters τ = i (left panel) and τ = 1/2 +

√
3/2i (right panel).

Full symbols denote numerical results obtained by ED or QMC (the
lowest Z2 odd levels), while empty symbols denote the ε-expansion
results. The dashed line shows a dispersion according to the speed of
light.

are characterized by the presence of two bosons, the e and m
particles. These fractionalized particles can only be created
in pairs and obey mutual anyonic statistics. The confinement
transition can then be driven by condensing either the e or
the m particles. Without loss of generality, we will consider
the condensation of them particles and call it’s corresponding
field φ. The critical theory turns out to be Ising*: φ can only
be created in pairs, so the effective Lagrangian must be even in
a real field φ, implying we should only include Z2 even states
in a critical Ising theory. In addition, φ and −φ are physi-
cally indistinguishable, and so both periodic and anti-periodic
boundary conditions have to be considered. We emphasize
that this mapping is independent of any specific microscopic
lattice model and should hold generically between universal
theories and their topological counterparts.

As a microscopic model illustrating this transition we study
the critical energy spectrum of the Toric Code Hamiltonian
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perturbed by a longitudinal field [47–51]:

HTC = −J∑sAs − J
∑

pBp − h
∑

i σ
x
i (3)

As =
∏

i∈s σ
x
i , Bp =

∏
i∈p σ

z
i

The σi describe S = 1/2-spins on the 2N edges of a square
lattice, p denotes a plaquette and s a star on the lattice. All
As and Bp commute with each other and so the model can
be solved analytically for h = 0 by setting As = 1 ∀s and
Bp = 1 ∀p [52]. On a torus the ground state manifold is,
however, four-fold degenerate and can be characterized by the
eigenvalues±1 of Wilson loops winding around the torus. An
e (m) particle is described by setting As = −1 (Bp = −1)
on a star (plaquette). The longitudinal field introduces a dis-
persion for the m particles which finally condense and drive
the phase transition at h = hc by confinement of the e parti-
cles [29–31, 47].

The above considerations regarding the relationship be-
tween Ising and Ising* QFT can be made very explicit for
the Toric Code. The Toric Code Eq. (3) in the sector without
e particles (As = 1 ∀s) can be exactly mapped to an even TFI
model on the dual square lattice with N sites, where only the
even spin-flip sector is present [47, 53, 54]. The groundstate
manifold, described by the eigenvalues of the Wilson loops,
maps to both, periodic and anti-periodic boundary conditions
of the Ising model [55]. In the following we will make use of
this mapping to compute the finite-size torus spectrum of the
Ising* transition for τ = i using ED.

In the left part of Fig. 4 we present the low-energy finite-
size spectrum of the Ising* transition obtained with ED sim-
ulations. The spectrum is rescaled with the same factor ∆0

as in Fig. 2 such that they can be easily compared. The rela-
tionship between the critical Ising and Ising* theories results
in the fact that the levels called εT (+∆κ) in Fig. 2 are identi-
cally present in the Ising* spectrum (c.f. P/P levels in Fig. 4).
The most remarkable feature, however, is the presence of very
low-lying levels in the spectrum. They arise from the ground-
state manifold in the spin-liquid phase, where their splitting
exponentially scales to zero with L. At criticality they, how-
ever, scale as 1/

√
N as the entire low-energy spectrum. The

small relative splitting of the four lowest levels is surprisingly
small. The right panel of Fig. 4 shows a comparison of the
universal torus spectrum for an Ising* transition obtained with
ED and ε-expansion similar to Fig. 3 [56]. A zoom into the
conspicuous low-energy levels is shown in the inset. Again
we observe a decent agreement of the different methods.

Conclusions — We have computed the universal torus en-
ergy spectrum for the Ising and Ising* transitions in 2+1D pro-
viding a characteristic fingerprint of the corresponding confor-
mal field theories and have highlighted the implications of a
neighbouring Z2 spin liquid on the torus spectrum. Addition-
ally, we have highlighted a phenomenological picture based
on the quantum numbers of the individual energy levels which
shows a structure qualitatively similar to the operator content
of the field theory in flat space. Using the numerical and ana-
lytical technology presented in this paper it will be possible to
inspect and chart the characteristic spectrum of more complex

FIG. 4. Universal torus spectra for the Ising* QFT and the mod-
ular parameters τ = i. The labels A/P etc. denote the boundary
conditions along the two directions of the torus, where P(A) means
(anti-)periodic. Left: Normalized low-energy spectrum from ED
with the same normalization constant ∆0 as in Fig. 2. The levels
in the P/P sector are the εT (+∆κ) levels from the TFI spectrum. A
very remarkable feature are the four very low-lying levels which gov-
ern the four-fold degenerate groundstate manifold in the deconfined
phase. See Fig. 2 for further details. Right: Full symbols denote
numerical results obtained by ED, while empty symbols denote ε-
expansion results. The dashed line shows a dispersion with the speed
of light. The inset is a zoom into the four lowest levels. See Fig. 3
for further details.

quantum critical points, such as O(N) Wilson-Fisher fixed
points, Gross-Neveu-Yukawa type phase transitions in inter-
acting Dirac fermion models [57, 58] or designer Hamiltoni-
ans displaying deconfined criticality [2].
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