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Transposable elements, or transposons, are DNA sequences that can jump from site to site in
the genome during the life cycle of a cell, usually encoding the very enzymes which perform their
excision. However, some transposons are parasitic, relying on the enzymes produced by the regular
transposons. In this case, we show that a stochastic model, which takes into account the small
copy numbers of the transposons in a cell, predicts noise-induced predator-prey oscillations with a
characteristic time scale that is much longer than the cell replication time, indicating that the state
of the predator-prey oscillator is stored in the genome and transmitted to successive generations.
Our work demonstrates the important role of number fluctuations in the expression of mobile ge-
netic elements, and shows explicitly how ecological concepts can be applied to the dynamics and
fluctuations of living genomes.

PACS numbers: 87.23.Cc, 87.10.Mn, 87.23.Kg

Transposable elements (TE) [1, 2] or transposons are
DNA sequences that can migrate from site to site in a
host genome. These mobile genetic elements are found in
all three domains of life, but especially compose a signifi-
cant fraction of eukaryotic genomes, for example, occupy-
ing 45% of the human genomic sequence [3]. Transposons
are regarded as a major driver of adaptation and evolu-
tion [4], since they can induce both beneficial and dele-
terious transformations in the host genome, by inserting
into encoding or regulation sequences, or causing mis-
aligned pairing and unequal crossovers of chromosomes.
In most cases, the modifications are disadvantageous to
the host, for example causing hemophilia A in humans
[5]. The activity of TEs has historically been observed
through detailed population level assays, but recent mea-
surements have demonstrated their activity in real time
in living cells, using sophisticated fluorescence techniques
[6], quantifying in detail how the stochastic processes of
excision are not purely random, but reflect a cell’s en-
vironment and genetic history. The interplay between
transposon dynamics and replication, the cell’s genotype
and phenotype and the interactions with the environment
are all reminiscent of population dynamics of organisms
within an ecosystem, and this perspective is one that we
explore and quantify here.

The dynamics of TEs are complex, but can be con-
veniently separated into two types of edit operation on
the host genome: copy-and-paste, and cut-and-paste
[7]. DNA transposons cut themselves out of the origi-
nal site on the genome and later reintegrate at another
site, thus performing a “cut-and-paste” operation which
leaves the genome size invariant. Retrotransposons first
transcribe into mRNA intermediates and then retrotran-
scribe to a new site on the genome sequence. This “copy-
and-paste” dynamics leads to the growth of the genome

size. Some transposons (autonomous) encode the very
enzymes which perform their excision, while others are
parasitic (non-autonomous), relying on the enzymes pro-
duced by the regular TEs.

Several theoretical approaches have been proposed to
study the dynamics of transposons. Population genetics
models [8–13] were first developed to describe the equilib-
rium distribution of transposons in a population. Recent
development views the genome as an ecosystem, with ge-
netic elements of different types playing the role of in-
dividuals from different species [14–19]. In the case of
non-autonomous transposons, a mean-field predator-prey
type model describes their parasitic relationship with an
autonomous transposon [16, 17]. However, these models
do not account for the molecular level interactions be-
tween transposable elements and the dynamic behavior
turns out to be sensitively dependent on these details.
Furthermore, in a cell the copy number fluctuations are
large, since the number of active (expressed) transposons
is usually of order ten to a hundred [20]. Thus, the next
generation of transposon models needs to take into ac-
count molecular details and stochasticity.

The purpose of this Letter is to develop a mini-
mal individual-level model based on the specific inter-
action mechanism between a pair of autonomous-non-
autonomous transposons. We begin with a model of the
interactions between the TEs, and then use techniques
from statistical mechanics to derive stochastic differential
equations [21]. Our model predicts that number fluctua-
tions generate persistent, noisy oscillations in the popu-
lations of the TEs, with a characteristic time scale that
is much longer than the cell replication time, indicating
that the state of the predator-prey oscillator is stored
in the genome and transmitted to successive generations.
Our work builds upon recent results that have shown how
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FIG. 1. (Color online.) (a) shows the structure of L1 and Alu
elements. L1 has a pol II promoter (the right-pointing ar-
row) and an antisense promoter (the left-pointing arrow) fol-
lowed by two open reading frames (ORFs) encoding a RNA
binding protein and a protein that consists of an endonu-
clease (ED) and a reverse transcriptase (RT), respectively.
Alu is composed of two non-coding monomers, with the left
one bearing A and B boxes (the shaded area in the figure)
as the pol III promoter. L1 and Alu elements share similar
poly-A tails and are both flanked by target site duplicates
(TSDs). (b) shows the cis and trans effects of L1 elements.
When an ED+RT protein is translated at the ribosome, it
cis-preferentially binds with the L1 mRNA that codes it, in-
dicated by the solid arrow. An Alu mRNA can bind with two
signal recognition proteins SRP9 and SPR14, and then at-
tach to the ribosome. The nascent ED+RT protein then can
trans-bind to the Alu mRNA, which has a similar poly-A tail
(indicated by the dashed arrow), presumably with a similar
probability to binding to L1 mRNA.

demographic stochasticity in ecosystems, where popula-
tion size is integer-valued and locally finite, can lead to
minimal models of persistent population cycles [21] or
spatial patterns [22–26] without extra assumptions about
the details of predation.

Detailed model for transposon dynamics:- Retrotrans-
posons consist of two subgroups: LTR-transposons that
have a long terminal repeat (LTR) structure, and non-
LTR transposons that do not [7]. There are two types
of non-LTR elements that show especially interesting in-
teraction: the autonomous long interspersed nuclear el-
ements (LINEs), and the non-autonomous short inter-
spersed nuclear elements (SINEs) [27]. In the human

genome, the only active LINEs are LINE1 (L1) elements,
which take up 17% of the entire genome [3]. They help
SINEs, such as Alu elements, to transpose by provid-
ing critical enzymes used in the copy-and-paste dynamics
[28]. We take L1 and Alu elements in the human genome
as an example of a LINE-SINE pair and build a model
of their interaction.

When a protein is produced at a ribosome coded by an
L1 mRNA, it tends to bind with that particular mRNA,
presumably by recognizing its polyadenine (poly-A) tail
[29], and later retrotranscribes it into the genome. This is
known as the cis-preference of L1 elements [30]. However,
if an Alu mRNA attaches to the same ribosome, then
it can bind with the nascent protein by faking the L1
mRNA poly-A tail [31]. In this way, Alu elements steals
the transposition machinery designed by L1 elements [32,
33]. This is known as the trans-effect of L1 elements [30].
The mechanism is sketched in Fig. 1(b).

Minimal model for transposon dynamics:- Based on the
above detailed interaction, an individual level minimal
model can be made, discarding all details about how pro-
teins are made and how complexes are formed. The in-
dividual reactions are shown in Eq. (1), where L stands
for an active LINE, S for an active SINE, and RL for
the complex of the ribosome, LINE mRNA and nascent
protein. Deactivated transposons do not participate in
the transposition events and thus are excluded from the
model.

An L element encodes the complex RL at the rate bR.
The complex RL retro-transposes to produce a new L
element at the rate bL, if there is no interruption. S el-
ement hijacks the complex RL to duplicate itself at the
rate bS/V , where V is the system size. The complex
RL decays at the rate dR. L and S elements are deac-
tivated, at the rates dL and dS , respectively. ∅ stands
for null. The reactions for this minimal model, with the
corresponding forward rates are as follows:

L→ L+RL, bR (1a)

RL → L, bL (1b)

RL + S → 2S, bS/V (1c)

RL → ∅, dR (1d)

L→ ∅, dL (1e)

S → ∅, dS (1f)

We assume the system is well mixed because mixing of
reactants is faster, happening constantly within the cell
lifetime, than the reactions.

We first use the Gillespie algorithm [34] to simulate the
above reactions. Copy number vs time curves are plotted
in Fig. 2. As shown in the figure, LINE and SINE copy
numbers fluctuate around constant values, in the form of
quasi-cycles. The circular envelope of the trajectory on
the L-S plane indicates a phase difference of roughly π/2,
with SINE lagging LINE, supporting the identification of
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FIG. 2. (Color online.) Results of a typical stochastic sim-
ulation with illustrative parameters bR = 2, bL = 1, bS = 1,
dR = 2, dL = 0.5, dS = 0.5, and the system size V = 500.
The main figure shows the copy numbers of active LINEs,
SINEs and ribosome/L-mRNA/protein complexes as a func-
tion of time, in the unit of a cell generation. Copy numbers
fluctuate around constant values, demonstrating quasi-cycles
with period ∼ 25 generations. Solid lines are obtained by
evolving the deterministic equations and show oscillatory de-
cay toward steady values. Demographic noise induces quasi-
cycles by constantly stimulating the deterministic oscillation
mode. The inset shows the trajectory on the L-S plane. The
circular envelope indicates a phase difference of roughly π/2.

SINEs as predators on the LINEs.

System size expansion:- Let the copy number concentra-
tions of active LINEs, SINEs and complexes be L, S and
RL respectively. Then, with the system size being V ,
V L, V S and V RL are equal to the actual copy numbers
of the corresponding groups. The master equation about
the probability P(L, S,RL) of the system being in the
state (L, S,RL) is written down as follows,

d

dt
P(L, S,RL)

=V
{

(E−RL
− 1)bRL+ (E+RL

E−L − 1)bLRL

+ (E+RL
E−S − 1)bSRLS + (E+RL

− 1)dRRL

+ (E+L − 1)dLL+ (E+S − 1)dSS
}
P, (2)

with the raising and lowering operators given by

E±Xf(X) ≡ f(
NX ± 1

V
) ≈ f(X)± 1

V
∂Xf+

1

2V 2
∂2Xf, (3)

where f is an arbitrary function of the concentration X,
and X stands for L, S or RL.

Substituting the expansions of operators into the mas-
ter Eq. (2), and saving terms up to order O(V −1), we
obtain a non-linear Fokker-Planck equation. The corre-
sponding Langevin equations about concentrations L, S
and RL are nonlinear with multiplicative noises.

To obtain a set of linearized Langevin equations for
concentration fluctuations, we perform the van Kampen’s
system size expansion, separating concentrations into de-
terministic part, L̄, S̄ and R̄L, and stochastic part, ξ, η
and θ, as follows.

L = L̄+
ξ√
V
, S = S̄ +

η√
V
, RL = R̄L +

θ√
V
. (4)

Writing

Π(ξ, η, θ) ≡ P(L, S,RL), (5)

we find that

d

dt
P = ∂tΠ−

√
V

dL̄

dt
∂ξΠ−

√
V

dS̄

dt
∂ηΠ−

√
V

dR̄L
dt

∂θΠ.

(6)
Substituting the system size expansion expressions Eq.
(4) into the nonlinear Fokker-Planck equation and match-
ing orders of V , we obtain to O(

√
V )

dL̄

dt
= bLR̄L − dLL̄, (7a)

dS̄

dt
= bSS̄R̄L − dSS̄, (7b)

dR̄L
dt

= bRL̄− bLR̄L − bSS̄R̄L − dRR̄L. (7c)

These are the deterministic, or mean field, equations.
The coexistence steady state, where L̄, S̄ and R̄L are
all non-zero, is always exponentially stable, according to
linear stability analysis. We have verified numerically
that the imaginary part of the linear stability matrix
eigenvalues provides a reasonable estimate for the an-
gular frequency of quasi-cycles. Specifically, for the pa-
rameters used to generate Fig. 2 and Fig. 3, the eigen-
value imaginary part is equal to 0.2330, and agrees well
with the Gillespie simulation value for the peak angular
frequency, 0.23 generation−1, of the quasi-cycle power
spectra shown in Fig. 3.

By matching O(1) terms, we obtain the linearized
Langevin equations for ξ, η and θ using Ito’s Lemma
[35]:

dξ

dt
= bLθ − dLξ + r(t), (8a)

dη

dt
= bSR̄Lη + bSS̄θ − dSη + s(t), (8b)

dθ

dt
= bRξ − bLθ − bSR̄Lη − bSS̄θ − dRθ + h(t). (8c)

r(t), s(t) and h(t) are noises in ξ, η and θ, respectively.
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FIG. 3. (Color online.) Power spectra of the LINE and SINE
concentration fluctuations. Circles stand for the power spec-
tra obtained by averaging over 1000 replicates. Solid lines
stand for the calculated spectra. The dash line is a reference
function ∼ ω−2. Parameters are bR = 2, bL = 1, bS = 1,
dR = 2, dL = 0.5, dS = 0.5, V = 500. The peak angular
frequency is equal to 0.23 generation−1, corresponding to a
period of 27 generations. The straight tail, in log-log scale,
has a slope of −2, indicating a ω−2 asymptotic behavior.

The correlations between these noises are given by

〈h(t)h(t′)〉 = δ(t− t′)(bRL̄+ bLR̄L + bSS̄R̄L + dRR̄L),
(9a)

〈r(t)r(t′)〉 = δ(t− t′)(bLR̄L + dLL̄), (9b)

〈s(t)s(t′)〉 = δ(t− t′)(bSS̄R̄L + dSS̄), (9c)

〈h(t)r(t′)〉 = δ(t− t′)(−bLR̄L), (9d)

〈h(t)s(t′)〉 = δ(t− t′)(−bSS̄R̄L), (9e)

〈r(t)s(t′)〉 = 0. (9f)

These Langevin equations describe the fluctuations of
concentrations around the steady state values.

Persistent oscillations:- The power spectra Pξξ(ω) and
Pηη(ω) can be calculated by manipulating the Fourier
transform of Eq. (8) and the correlations Eq. (9). The
result is a complicated fraction, of which the numera-
tor is a fourth order polynomial of ω and the denom-
inator a sixth order polynomial of ω. Asymptotically,
the power spectra have a tail in the form of ω−2. Fig-
ure 3 shows a comparison between the power spectra
obtained from simulation and the analytic calculation,
which demonstrates a satisfactory agreement. This mini-
mal model shows that the negative feedback of SINEs on
LINE transposition rate results in a predator-prey like
dynamics [21], with noise induced quasi-cycles.

Estimation of parameters:- For the human genome, trans-
position rates of L1 and Alu elements measured by
the mutation accumulation method are of order 1 in
O(10) ∼ O(100) births [36–38]. The deactivation rates

have a lower limit set by the base pair point mutation
rate, which is roughly 10−8 per base pair per genera-
tion [39, 40]. These rates seem to be too slow to gener-
ate any experimentally detectable dynamical behaviors.
However, this estimate only accounts for fixed mutations
that are not lethal, and thus underestimates the actual
mutation rates. In a recent experiment [6] on real-time
transposition events in living bacterium cells, the ac-
tual transposition rate directly observed was 103 times
higher than that obtained by the mutation accumula-
tion method. Moreover, the point mutation rate can be
raised by a factor of 102 by deactivating the base pair
mismatch repair machinery [41]. Thus, for a single-cell
experiment rather than a large population, the relevant
estimate is: bR = 2, bL = 1 × 10−2, bS = 1 × 10−2,
dR = 1, dL = 1× 10−2, dS = 1× 10−2, with units being
generation−1. The resultant quasi-cycle period should be
roughly 1 × 103 generations. Such oscillations could po-
tentially be observed by integration of the LINE/SINE
elements into a host microbial cell, E. coli for example,
and using novel reporter techniques [6, 42].

In conclusion, we have shown that the dynamics of
transposons can fruitfully be analyzed using analogy to
ecological models, equipped with tools from statistical
physics. Our calculations predict the existence of poten-
tially observable, persistent and noisy oscillations in the
populations of active SINEs and LINEs.
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