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Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic
interfaces is usually quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model,
while treating each interface as a fictitious bulk layer whose thickness is δ times the spin-diffusion length. By
employing the properly generalized circuit theory and the scattering matrix approaches, we derive the relation
of the parameter δ to the spin-flip transmission and reflection probabilities at an individual interface. It is found
that δ is proportional to the square root of the probability of spin-flip scattering. We calculate the spin-flip
transmission probability for flat and rough Cu/Pd interfaces using the Landauer-Büttiker method based on the
first-principles electronic structure and find δ in reasonable agreement with experiment.

Spin transport at metallic interfaces is an essential ingredi-
ent of various spintronic device concepts, such as giant mag-
netoresistance (GMR) [1–3], spin injection and accumulation
[4], spin-transfer torque [5], and spin pumping [6]. Spin-orbit
coupling (SOC) enables some device concepts, such as spin-
orbit torques in ferromagnet/heavy-metal bilayers [7, 8] and
spin current detection based on the inverse spin-Hall effect [9]
in spin-caloritronic devices [10]. Interfacial spin-orbit scat-
tering affects spin transport in GMR multilayers [2, 3], spin
pumping [11, 12], spin injection [13], and Gilbert damping
[14]. It contributes to the spin relaxation in metallic films [15–
17] and to the magnetoanisotropies in the resistance of mag-
netic miltilayers [18], tunnelling conductance [19–22], and
Andreev reflection [23, 24], which are especially large when
the magnetic electrodes are half-metallic [24, 25]. Interfacial
spin-flip scattering can also appear due to spin fluctuations
[26].

In the absence of interfacial spin-flip scattering, spin trans-
port in magnetoelectronic circuits can usually be described us-
ing the circuit theory [27–29]. In the presence of SOC, the
spin current is not conserved at the interfaces. Absent a com-
plete theory, interfacial spin-flip scattering has been described
by introducing a fictitious bulk layer of thickness tI , resistiv-
ity ρI , and spin-diffusion length lI

s f , and using the parameter
δ = tI/lI

s f to characterize “spin memory loss” at the inter-
face [2, 3, 14, 30, 31]. The parameter δ was measured [2, 3]
for multiple interfaces by mapping the experimental current-
perpendicular-to-the-plane magnetoresistance data, for spin
valves with multilayer insertions, to the phenomenological
Valet-Fert model [32]. However, the relation of the param-
eter δ to the scattering properties of an individual interface
is not known. Moreover, this description of an interface is
generally incomplete, because the spin-flip transmittance and
the reflectances on two sides are all independent parameters.
For example, the spin-flip reflectance is relevant for spin in-
jection [33] and for the interface-induced spin relaxation in a
spin reservoir [15–17]. The existing formulations [13, 34, 35]
including only one interfacial spin-relaxation parameter are,
therefore, also incomplete.

In this Letter we apply the scattering matrix and the gen-

eralized circuit theory approaches to establish the correspon-
dence between the phenomenological parameter δ for a non-
magnetic interface, as extracted from GMR-like measure-
ments, and the calculable spin-resolved transmittance and re-
flectance properties of an individual interface. The latter are
calculated from first principles for the Cu/Pd interface. The
theory provides a complete framework for including interfa-
cial spin-flip scattering in magnetoelectronic devices.

Valet-Fert theory. The layer thicknesses in the typical
measurements [2, 3] are about 3 nm; the resistance of each
individual layer is at least a few times smaller than the resis-
tance of each interface, as long as nominally pure materials
are used. For example, the area-resistance products of a 3-
nm layer of nominally pure Pd and of the Cu/Pd interface are
about 0.14 and 0.45 fΩ·m2, respectively [2]. Therefore, in the
following we treat the problem under the assumption that the
bulk resistances are negligibly small compared to the interface
resistances. This simplifies the expressions and does not affect
the result to first order in spin-flip scattering rates [36].

To facilitate comparison with scattering theory, it is con-
venient to consider a periodic multilayer in which the
FN1(N2N1)N block repeats itself. Here F is a ferromagnetic
layer, N1 and N2 are two different non-magnetic layers, and
we are interested in the properties of the N1/N2 interface. De-
scribing an interface as a bulk interlayer, we solve the Valet-
Fert equations [32] in the multilayer for parallel and alternat-
ing antiparallel configurations using the transfer-matrix ap-
proach. Taking the limit in which the resistance is dominated
by and spin-flip scattering is present only at N1/N2 interfaces,
we find a simple expression for the magnetoresistance:

∆R = RAP − RP =
(βr∗F)2

rI

δ

sinh mδ
, (1)

where m = 2N is the number of interfaces, β = (ρ↓−ρ↑)/(ρ↑+
ρ↓) the spin asymmetry, r∗F = ρ∗F tF the effective resistance, tF

the thickness, and ρ∗F = (ρ↑ + ρ↓)/4 the effective resistivity of
the ferromagnet, and rI = ρI tI is the resistance of the interface.

Scattering theory. Since we are dealing with low-
resistance metallic interfaces, the relevant resistances are
those measured in the two-terminal setup, rather than the four-
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terminal resistances measured in a constriction or calculated
within the Landauer-Büttiker approach. For spin-conserving
interfaces the relation between the two is well-known [37]: the
interface resistance appearing in series-resistor expressions is
obtained from the Landauer-Büttiker resistance by subtract-
ing the spurious contribution of the Sharvin resistance. The
approach of Ref. 37, which takes into account the deviations
of the distribution functions from equilibrium, can be readily
applied to the periodic multilayer introduced above.

We use the result of Ref. 37 for the two-terminal conduc-
tance GS :

GS = 2G0

∑
i jσσ′

[(I − T + R)−1T ]iσ, jσ′ (2)

where i, j denote conduction channels, G0 = e2/h, and the
transmission and reflection matrices T and R are now 2 × 2 in
spin space. The transmission and reflection matrices are cal-
culated using the semiclassical concatenation rules [38]. The
irrelevant spin-flip scattering in the ferromagnetic layers is ne-
glected, and the spin-diagonal transmission and reflection ma-
trices across half of the ferromagnetic layer are written as

T F
iσ, jσ′ =

1
M1

δσσ′

1 + sσ
, RF

iσ, jσ′ =
1

M1

sσδσσ′
1 + sσ

(3)

where M1 is the number of conducting channels per spin in
the adjacent normal metal, and sσ = rσM1/2, where rσ is
the resistance of one spin channel (which includes the F/N
interface resistance). The factor 1

2 comes from the fact that
the supercell period contains half of the F layer at each edge.
Concatenation of two such “half-thick” F layers leads to the
correct scattering matrices for the whole F layer. The results
of this calculation are identical to those of the circuit theory,
Eqs. (6)-(7).

Circuit theory. A more general approach, not limited to
periodic structures, is to employ the magnetoelectronic circuit
theory [27–29] extended to include spin-flip scattering [36].
For an adjacent pair of layers L1, L2 in a magnetic multilayer,
the charge I0 and spin Ī s currents in, say, layer L2 are:

I0
2 = G∆ f 0 + Ḡs∆ f̄ s − Ḡt · f̄ s

1 − Ḡr · f̄ s
2 , (4)

Ī s
2 = Ḡs∆ f 0 + G∆ f̄ s − Ĝt · f̄ s

1 − Ĝ
r · f̄ s

2 . (5)

Here ∆ f 0 = f 0
1 − f 0

2 and ∆ f s = f s
1 − f s

2 are interfacial drops of
charge and spin components of the distribution function. We
introduced 28 parameters, including one scalar charge con-
ductance G, three vector conductances Ḡs, Ḡt and Ḡr, and
two tensor conductances Ĝt and Ĝr (see Supplemental Mate-
rial [36] for their definitions and relation to the notation used
in Ref. [39]). Equations (4)-(5) represent the most general
form of the boundary conditions; in particular, they include
the effects of the mixing conductances, which are important in
noncollinear magnetic multilayers [40–42]. They also repro-
duce the generalization of Valet-Fert theory to noncollinear
systems [55, 56].

The expressions simplify for a non-magnetic, axially sym-
metric interface, for which Ḡs = Ḡt = Ḡr = 0, and the ten-
sors Ĝt and Ĝr are diagonal in the axial reference frame. For

highly transparent interfaces all conductances should be prop-
erly renormalized [43, 44]; the expressions are given in the
Supplemental Material [36].

We apply the circuit theory to the FN1(N2N1)NF spin valve,
using Kirchhoff’s rules for charge and spin conservation in
each node. For simplicity, we assume that the spin accumu-
lation is aligned parallel or perpendicular to the interface; the
general case can be treated as a superposition of these align-
ments. Retaining only first-order terms in spin-flip scattering
at each concatenation step, we find the magnetoresistance

∆R =
(βr∗F)2

r̃Im

1 − G̃t

G̃
− (m2 − 1)

2G̃t + G̃r
1 + G̃r

2

6G̃

 , (6)

where the tilde accentuates the renormalized conductances
[36] for the given spin accumulation axis (for example,
2G0/G̃ = 2G0/G − 1/2M1 − 1/2M2 [37]). Before renormal-
ization, G = G0(T↑↑ + T↓↓ + T↑↓ + T↓↑), Gt = 2G0(T↑↓ + T↓↑),
and Gr

i = 2G0(Ri
↑↓

+ Ri
↓↑

) corresponds to reflectance with inci-
dence from metal Ni. When the number of layers is large, we
can neglect m-independent terms and rewrite (6) as

∆R‖(⊥) =
(βr∗F)2

r̃Im

1 − 1
3

m2
Gsl
‖(⊥)

G̃

 (7)

where r̃I = G̃−1 is the renormalized interface resistance, and
we also introduced the spin-loss conductance Gsl = Gt + (Gr

1 +

Gr
2)/2. Note that Gsl does not need to be renormalized by the

Sharvin resistance when calculated up to the first order in the
spin-flip processes.

To establish correspondence with the Valet-Fert model, we
note that, to second order in x, we have x/ sinh x ≈ (1− x2/6).
Relating Eq. (7) and (1), we find

δ2 = 2
Gsl

G̃
(8)

The assumption of small mδ is, however, not essential. Ap-
plying Eqs. (4)-(5) to three contiguous non-magnetic layers
[36], we find the following finite-difference equation for the
spin accumulation:

D2 f s
i = f s

i−1 − 2 f s
i + f s

i+1, (9)

where D2 = 2G̃sl/(G̃ − G̃t). The most general solution of
Eq. (9) has the form:

f s
i = C1eδi + C2e−δi, (10)

where δ = ln
{
1 + (D2/2)[1 + (1 + 4/D2)1/2]

}
. This is identi-

cal to the solution of the Valet-Fert equations [32] and gener-
alizes the definition of δ (8) to the strong spin-flip scattering
case. If the spin-flip scattering is weak, we recover Eq. (8),
since in this limit δ ≈ D.

Equation (8) shows that δ is proportional not to the spin-
flip scattering probability at the interface (as it has been usu-
ally assumed [2]), but to its square root. Thus, for example,
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a seemingly large value δ ≈ 0.24 deduced experimentally for
the Cu/Pd interface corresponds to a spin-flip scattering prob-
ability of less than 2%.

For weak spin-flip scattering, the parameter δ measured in
multilayer (m � 1) magnetoresistance experiments depends
only on the sum of spin-flip transmission (T↑↓) and reflection
(Ri
↑↓

) probabilities. These parameters are not related through
unitarity, and there is no reason to assume any specific relation
between them for a thin interface. In fact, spin transport in cir-
cuits containing spin-non-conserving interfaces generally de-
pends separately on these probabilities. Therefore, the param-
eter δ and the area-resistance product of the interface do not
provide complete information needed for the description of
arbitrary magnetoelectronic circuits.

We also note that the T (m)
↑↓

and R(m)
↑↓

components of the ma-
trices, which are obtained by concatenating m identical spin-
non-conserving scattering matrices, converge with each other
when m becomes large: T (m)

↑↓
≈ R(m)

↑↓
≈ m(T↑↓ + R↑↓). (The

latter equality holds as long as T (m)
↑↓
� T (m)

↑↑
.) For this reason,

the resistance and parameter δ = t/ls f completely describe the
behavior of a sufficiently thick non-magnetic bulk layer in an
arbitrary circuit, as assumed in the Valet-Fert theory.

First-principles calculations. The spin-resolved transmit-
tances and reflectances were calculated using the Landauer-
Büttiker approach [38] implemented within the tight-binding
linear muffin-tin orbital (TB-LMTO) method [45]. The dis-
cretized representation was used for the coordinate operator
in transport calculations [46], and SOC was included as a per-
turbation to the LMTO potential parameters [47, 48]. The
generalized gradient approximation is used for exchange and
correlation [49].

We focus on the Cu/Pd interface, for which the experimen-
tal measurements yield a fairly large parameter δ ≈ 0.24, with
relatively narrow error bars [50]. We consider (111) and (001)
interface orientations, with the spin quantization axis, corre-
sponding to the polarization of the spin current in a device,
aligned either parallel or perpendicular to the interface. We
assume that the atomic positions lie on the ideal face-centered
cubic lattice with a lattice constant a = 3.818 Å. In addition
to the ideal interfaces, several simple intermixing models are
considered for the (111) orientation.

Some care needs to be taken to define the spin-flip scatter-
ing probabilities, bearing in mind that, owing to the presence
of SOC in the bulk, the electronic states in each spin reservoir
are already not pure spin-up and spin-down spinors. This bulk
spin mixing should be separated from the spin-flip scattering
at the interface.

To define the spin-resolved interfacial transmittance Tσσ′
and reflectance Ri

σσ′ (where i = Cu or Pd), we turn off SOC
in the leads and introduce “ramp-up” regions where SOC is
gradually increased as one moves away from the embedding
planes toward the Cu/Pd interface. For generic k-points this
“adiabatic embedding” allows pure spin states in the leads to
evolve without scattering into the bulk eigenstates, and the
spin-dependent scattering probabilities are thus properly de-

fined [51]. An exception occurs near the boundaries of the
projections of the Fermi sheets, where the group velocity is
nearly parallel to the interface. Here the deformation of the
Fermi surface by SOC can lead to strong reflection.

To examine the effect of adiabatic embedding on the Pd
side, we consider a Pd slab of thickness D, located at |x| < D/2
and attached to Pd leads without SOC at |x| > D/2, with the
SOC parameters scaled by a function f (|x|) such that f (0) = 1
and f (D/2) = 0. We used a simple trapezoidal form of f (x),
which is constant over a few atomic layers near the interface
and then declines linearly to zero; the results are insensitive
to the shape of f (x). As long as D is at least a few dozen
monolayers in this test system, T↑↓ is negligible, while R↑↓ is
2–4 times smaller compared to RPd

↑↓
in the Cu/Pd system with

a similar ramp-up region on the Pd side. Fig. 1 shows that
the k-resolved R↑↓ in the test system is indeed significant only
near the edges of the Fermi surface projections. As expected,
R↑↓ in the test Pd system quickly saturates as the width D is
increased. Qualitatively, the situation is analogous to the bal-
listic scattering from a ferromagnetic domain wall [52].

FIG. 1. k-resolved spin-flip reflectance R↑↓ for the test Pd system, in
which SOC is gradually suppressed away from a (111) plane. The
spin quantization axis points up, parallel to the interface.

Strong reflection near the edges of the Fermi surface pro-
jection persists in the Cu/Pd system with adiabatic embedding.
Since these edges are in no way special for the scattering from
the abrupt Cu/Pd interface, it should be attributed to the reflec-
tion from the ramp-up region. Therefore, we subtract R↑↓ for
the test Pd system from RPd

↑↓
for the Cu/Pd interface. Since the

former is a few times smaller than the latter, the uncertainties
inherent in this procedure lead to relatively small errors in δ
compared to the experimental uncertainty [53].

In addition to ideal (111) and (001) interfaces, we con-
sidered several simple models of roughness with intermixing
in one monolayer for the (111) interface, with the follow-
ing structures of this monolayer: (A) 1:1 superlattice (50/50
model), (B) 2 × 2 ordering of Pd atoms within the Cu mono-
layer (75/25 model), (C) 2×2 ordering of Cu atoms within the
Pd monolayer (25/75 model).

The results are listed in Table I. Here R̄Cu
↑↓
/A and R̄Pd

↑↓
/A are

the specific spin-flip reflectances for Cu with SOC embedded
in Cu without SOC, and for adiabatically embedded Pd with
SOC, respectively. The integration is performed using a mesh
of 256×256 points in the full two-dimensional Brillouin zone;
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a coarser 64 × 64 mesh yields very similar results. For each
interface we consider two orientations of the spin quantization
axis, parallel (‖) and perpendicular (⊥) to the interface, which
reflects the orientation of the spin accumulation in the device.
In the parallel case we average T↑↓ and Rs

↑↓
over two orthogo-

nal in-plane orientations of the spin quantization axis; we also
average over the reversed spin indices, e.g., T↑↓ and T↓↑, as
well T↑↑ and T↓↓. The deviations from axial symmetry are
appreciable only for the 50/50 model of the (111) interface,
where they reach 35% for RCu

↑↓
.

In all cases listed in Table I the spin-loss conductance Gsl is
dominated by spin-flip reflection. Thus, the parameter δ is not
directly related to the probability of a spin flip in transmission,
as it has been previously assumed [2].

Fig. 2 shows k-resolved transmittances and reflectances for
the (111) interface with magnetization parallel to the inter-
face. Note the mirror symmetry in the plane perpendicular to
the spin quantization axis. Fig. 2(d) shows strong reflection at
the Fermi edges, similar to Fig. 1, which is due to the adia-
batic embedding on the Pd side. However, contrary to Fig. 1,
significant spin-flip reflection is also seen at generic k-points
in Fig. 2(d), which originates at the Cu/Pd interface.

FIG. 2. k-resolved transmittances Tσσ′ and reflectances Rs
σσ′

for the
Cu/Pd (111) interface. (a) T↑↑, (b) T↑↓, (c) RCu

↑↓
, (d) RPd

↑↓
. The spin

quantization axis points up, parallel to the interface.

The values of the parameter δ for devices with in-plane (‖)
spin accumulation (Table I) can be directly compared with the
experimental value δ = 0.24+0.06

−0.03 [50]. The results for (001)
and (111) interface orientations are quite similar and in rea-
sonable agreement with experiment. In agreement with Ref.
54, the calculated interface area-resistance product AR is over-
estimated by 65-100% and is not strongly affected by inter-
mixing. Intermixing also has a relatively small effect on δ,
increasing it by a small amount. Due to the fairly large size
mismatch, the structure of the Cu/Pd multilayer can exhibit

significant disorder and strain relaxation, which may lead to
the discrepancy in the area-resistance product. The overesti-
mation of δ may be due to the same reason.

Table I shows that δ becomes notably larger when the spin
accumulation is oriented perpendicular to the interface. This
angular dependence can be tested in experiments on multilay-
ers [2, 3] by utilizing ferromagnetic layers with perpendicular
magnetization. Anisotropy of a similar kind was found for the
spin relaxation rate in thin films [15–17]. This spin relaxation
is due to spin-flip reflection at the film surface, and it can also
be described using the generalized circuit theory.

In conclusion, we have formulated a theory of spin loss
at metallic interfaces, linking the calculable spin-dependent
scattering properties of an interface with the phenomenolog-
ical parameter δ measured in experiments on magnetoresis-
tance in multilayers. This relation [Eq. (8)] shows that spin-
flip scattering on the order of a few percent yields δ that
is comparable to unity. First-principles calculations for the
Cu/Pd interface give δ in reasonable agreement with exper-
iment, but somewhat overestimated. Understanding of spin
loss at metallic interfaces is an important ingredient for the
analysis of spin transport in magnetic heterostructures with
strong spin-orbit coupling.

AK is much indebted to Gerrit Bauer for stimulating discus-
sions on the circuit theory with spin-flip scattering. This work
was supported by the National Science Foundation through
Grant No. DMR-1308751 and the Nebraska MRSEC, Grant
No. DMR-1420645, as well as by the DOE Early Career
Award DE-SC0014189 (AK) and the EPSRC CCP9 Flagship
project, EP/M011631/1 (MvS). The computations were per-
formed utilizing the Holland Computing Center of the Uni-
versity of Nebraska.
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TABLE I. Spin-dependent scattering at the Cu/Pd interfaces. Conductances per area are in PS/m2; 2AR in fΩ·m2.

Plane Structure M G0T↑↑/A G0T↑↓/A G0RCu
↑↓
/A G0RPd

↑↓
/A G0R̄Cu

↑↓
/A G0R̄Pd

↑↓
/A Gsl/A G̃/(2A) 2AR δ

(001) Ideal ‖ 0.30 0.003 0.016 0.033 0.0005 0.013 0.083 0.59 1.70 0.38
⊥ 0.30 0.003 0.031 0.040 0.0007 0.017 0.119 0.59 1.70 0.45

(111)

Ideal ‖ 0.32 0.008 0.010 0.039 0.0003 0.010 0.108 0.70 1.43 0.39
⊥ 0.32 0.011 0.017 0.052 0.0004 0.019 0.145 0.70 1.43 0.45

50/50 ‖ 0.31 0.009 0.011 0.044 0.0003 0.010 0.125 0.66 1.51 0.43
⊥ 0.31 0.012 0.020 0.061 0.0004 0.019 0.173 0.66 1.51 0.51

75/25 ‖ 0.31 0.010 0.011 0.048 0.0003 0.010 0.137 0.65 1.53 0.46
⊥ 0.31 0.014 0.020 0.067 0.0004 0.019 0.192 0.65 1.53 0.54

25/75 ‖ 0.32 0.010 0.011 0.049 0.0003 0.010 0.141 0.71 1.41 0.45
⊥ 0.32 0.014 0.019 0.066 0.0004 0.019 0.188 0.71 1.41 0.52
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Lamichhane, V. Taufour, A. Jesche, S. L. Bud’ko, P. C. Can-
field, and V. P. Antropov, Appl. Phys. Lett. 106, 062408 (2015).

[48] I. Turek, V. Drchal, and J. Kudrnovský, Philos. Mag. 88, 2787
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