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Abstract

Sharp structures in magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y3Fe5O12

(YIG) at low temperatures are attributed to the magnon-phonon interaction. Experimental results

are well reproduced by a Boltzmann theory that includes the magnetoelastic coupling (MEC). The

SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation.

The effect gives insight into the relative quality of the lattice and magnetization dynamics.

PACS numbers: 85.75.-d, 72.25.-b, 75.80.+q, 72.25.Mk
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The spin Seebeck effect (SSE) [1–19] refers to the generation of a spin current (Js) as

a result of a temperature gradient (∇T ) in magnetic materials. It is well established for

magnetic insulators with metallic contacts, at which a magnon flow is converted into a

conduction-electron spin current by the interfacial exchange interaction [20] and detected as

a transverse electric voltage via the inverse spin Hall effect (ISHE) [21–27] [see Fig. 1(a)].

The SSE provides a sensitive probe for spin correlations in magnetic materials [8, 9, 12–15].

The ferrimagnetic insulator yttrium-iron-garnet Y3Fe5O12 (YIG) is ideal for SSE measure-

ments [19], exhibiting a long magnon-propagation length [28–30], high Curie temperature

(∼ 560 K) [31], and high resistivity owing to a large band gap (∼ 2.9 eV) [32]. The magnon

and phonon dispersion relations in YIG are well known [33–38]. The magnon dispersion in

the relevant regime reads

ωk =
√

Dexk2 + γµ0H

√

Dexk2 + γµ0H + γµ0Mssin
2θ, (1)

where ω, k, θ, γ, µ0Ms, are the angular frequency, wave vector k with length k, angle θ with

the external magnetic field H (of magnitude H), gyromagnetic ratio, and saturation mag-

netization, respectively [33–36]. The exchange stiffness coefficient Dex as well as transverse-

acoustic (TA) and longitudinal-acoustic (LA) sound velocities for YIG are summarized in

Table I and the dispersion relations are plotted in Fig. 1(b).

In this Letter, we report the observation of a resonant enhancement of the SSE. The

experimental results are well reproduced by a theory for the thermally induced magnon flow

in which the magnetoelastic interaction is taken into account. We interpret the experiments

as evidence for a strong magnon-phonon coupling at the crossings between the magnon

and phonon dispersion curves, i.e., the formation of hybridized excitations called magnon-

polarons [40, 41].

The sample is a 5-nm-thick Pt film sputtered on the (111) surface of a 4-µm-thick single-

crystalline YIG film grown on a single-crystalline Gd3Ga5O12 (GGG) (111) substrate by

liquid phase epitaxy [42]. The sample was then cut into a rectangular shape with LV =

4.0 mm (length), LW = 2.0 mm (width), and LT = 0.5 mm (thickness). SSE measurements

were carried out in a longitudinal configuration [1, 19] [see Fig. 1(a)], where the temperature

gradient ∇T is applied normal to the interfaces by sandwiching the sample between two

sapphire plates, on top of the Pt layer (at the bottom of the GGG substrate) stabilized
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to TH (TL) with temperature difference ∆T = TH − TL (> 0). ∆T was measured with

two calibrated Cernox thermometers. A uniform magnetic field H =H ẑ was applied by

a superconducting solenoid magnet. We measured the DC electric voltage difference V

between the ends of the Pt layer with a highly resolved field scan, i.e., at intervals of 15 mT

and waiting for ∼ 30 sec after each step.

Figure 2(b) shows the measured V (H) of the Pt/YIG sample at T = 50 K. A clear signal

appears by applying the temperature difference ∆T and its sign is reversed when reversing

the magnetization. The magnitude of V at µ0H = 0.1 T is proportional to ∆T [see Fig.

2(c)]. These results confirm that V is generated by the SSE [19].

Owing to the high resolution of H , we were able to resolve a fine peak structure at

µ0H ∼ 2.6 T that is fully reproducible. A magnified view of the V -H curve is shown in Fig.

2(d), where the anomaly is marked by a blue triangle. Since the structures scale with ∆T

[see Figs. 2(c) and 2(d)], they must stem from the SSE.

The peak appears for the field HTA at which according to the parameters in Table I the

magnon dispersion curve touches the TA-phonon dispersion curve. By increasing H , the

magnon dispersion shifts toward high frequencies due to the Zeeman interaction (∝ γµ0H),

while the phonon dispersion does not move. At µ0H = 0, the magnon branch intersects

the TA-phonon curve twice [see Fig. 2(a)]. With increasing H , TA-phonon branch becomes

tangential to the magnon dispersion at µ0H = 2.6 T and detaches at higher fields [see Fig.

2(a)]. If the anomaly is indeed linked to the “touch” condition, there should be another peak

associated to the LA-phonon branch. Based on the parameters in Table I, we evaluated the

magnon−LA-phonon touch condition at µ0HLA ∼ 9.3 T. We then upgraded the equipment

with a stronger magnet and subsequently investigated the high-field dependence of the SSE.

Figure 2(f) shows the dependence V (H) of the Pt/YIG sample at T = 50 K, measured

between µ0H = ±10.5 T. Indeed, another peak appeared at µ0HLA ∼ 9.3 T precisely at the

estimated field value at which the LA-phonon branch touches the magnon dispersion [see

Fig. 2(e)], sharing the characteristic features of the SSE, i.e., it appears only when ∆T 6= 0

and exhibits a linear-∆T dependence [see Figs. 2(g) and 2(h)]. For µ0H > 9.3 T the V -H

curves remain smooth.

We carried out systematic measurements of the temperature dependence of the SSE

enhancement at HTA and HLA. Figure 3(c) shows the normalized SSE voltage S ≡

(V/∆T )(LT/LV ) as a function of H for various average sample temperature Tavg [≡
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(TH + TL)/2]. The amplitude of the SSE signal monotonically decreases with decreasing

T in the present temperature range [8, 9] [see Fig. 3(b)]. Importantly, the two peaks in S

at HTA and HLA exhibit different T dependences [see Figs. 3(c), 3(d), and 3(e)]. The peak

shape at HTA becomes more prominent with decreasing T and it is the most outstanding

at the lowest T . On the other hand, the S peak at HLA is suppressed below ∼ 10 K and it

is almost indistinguishable at the lowest T . This different T dependence can be attributed

to the different energy scale of the branch crossing point for H = HTA and H = HLA. The

frequency of the magnon−LA-phonon intersection point is 0.53 THz = 26 K (≡ TMLA),

and it is more than three times larger than that of the magnon−TA-phonon intersection

point (0.16 THz). Therefore, for T < TMLA, excitation of magnons with energy around the

magnon−LA-phonon intersection point is rapidly suppressed which leads to the disappear-

ance of the S peak at HLA at the lowest T .

The clear peak structures at low temperatures allow us to unravel the behavior of the

SSE around HTA in detail. Increasing H from small values, S increases up to a maximum

value at H = HTA, as shown in Fig. 3(d) (Tavg = 3.46 K). For fields slightly larger than

HTA, S drops steeply to a value below the initial one. The SSE intensity S(i), where i

(= 0, 1, 2) represents the number of crossing points between the magnon and (TA-)phonon

branch curves [see also Fig. 2(a)], can be ordered as S(1) > S(2) > S(0) and could be a

measure of the number of magnon-polarons.

The SSE is generated in three steps: (i) the temperature gradient excites magneti-

zation dynamics that (ii) at the interface to the metal becomes a particle spin current

and (iii) is converted to a transverse voltage by the ISHE. The latter two steps depend

only weakly on the magnetic field. For thick enough samples, the observed anomalies in

the SSE originate from the thermally excited spin current in the bulk of the ferromag-

net. The importance of the magnetoelastic coupling (MEC) for spin transport in mag-

netic insulators has been established by spatiotemporally resolved pump-and-probe optical

spectroscopy [41, 43]. Here we develop a semiclassical model for the SSE in the strongly

coupled magnon-phonon transport regime [40, 41, 44–46]. Our model Hamiltonian consists

of magnon (Hmag), phonon (Hel), and magnetoelastic coupling (Hmec) terms. In second-

quantized formHmag =
∑

k
Aka

†
k
ak+(Bk/2)(a

†
k
a†−k

+a−kak), Hel =
∑

k,µ ~ωµk

(

c†µkcµk +
1
2

)

,

and Hmec = ~nB⊥(
γ~

4Msρ
)1/2

∑

k,µ kω
−1/2
kµ e−iφak(cµ−k + c†µk) × (−iδµ1 cos 2θ + iδµ2 cos θ −

δµ3 sin 2θ)+h.c.. In spherical coordinates the wave vector k = k(sin θ cos φ, sin θ sin φ, cos θ),
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Ak/~ = Dexk
2+ γµ0H+(γµ0Ms sin

2 θ)/2, and Bk/~ = (γµ0Ms sin
2 θ)/2. Here, a†

k
(c†µk) and

ak (cµk) are magnon (phonon) creation and annihilation operators, respectively. B⊥ is the

magnetoelastic coupling constant, ρ the average mass density, n = 1/a30 the number density

of spins, and a0 the lattice constant. The magnon dispersion from Hmag is given by Eq. (1),

while the phonon dispersions are ωµk = cµk with µ = 1, 2 for the two transverse modes and

µ = 3 for the longitudinal one. δµi in Hmec represents the Kronecker delta. By diagonalizing

Hmag+Hel+Hmec [47], we obtain the dispersion relation of the i-th magnon-polaron branch

~Ωik and the corresponding amplitude |ψik〉. The magnon-polaron dispersions for θ = π/2

and φ = 0 are illustrated in Figs. 1(c) and 1(d), with a magnetic field µ0H = 1.0 T and

B⊥/(2π) = 1988 GHz [38].

We assume diffuse transport that at low temperatures is limited by elastic magnon and

phonon impurity scattering [45]. We employ the HamiltonianHimp =
∑

µ

∑

k,k′ c
†
µkv

ph
k,k′cµk′+

∑

k,k′ a
†
k
vmag
k,k′ak′ , where, assuming s-wave scattering, vph

k,k′ = vph and vmag
k,k′ = vmag denote the

phonon and magnon impurity scattering potentials, respectively. We compute the spin

current driven by a temperature gradient [6, 16] and thereby the SSE in the relaxation-time

approximation of the linearized Boltzmann equation. The linear-response steady-state spin

current Js(r) = −ζ · ∇T is governed by the SSE tensor ζ :

ζαβ =

∫

d3k

(2π)3

∑

i

W s
ikτik(∂kαΩik)(∂kβΩik)∂T f

(0)
ik |T=T (r). (2)

Here W s
ik = |〈0|ak|ψik〉|

2 is the intensity of the i-th magnon-polaron and τik is

the relaxation time towards the equilibrium (Planck) distribution function f
(0)
ik (r) =

(exp (~Ωik/ (kBT (r)))− 1)−1. The relaxation time τik of the i-th magnon-polaron reads

τ−1
ik = (2π/~)

∑

jk′ |〈ψjk′|Himp|ψik〉|
2δ(~Ωik − ~Ωjk′). The strong-coupling (weak scattering)

approach is valid when τ−1
ik1,2

≪ ∆Ω, where ∆Ω is the energy gap at the anti-crossing points

k1,2. We disregard the Gilbert damping that is very small in YIG.

From the experiments we infer the scattering parameters |vmag|2 = 10−5 s−2 [28] and
∣

∣vmag/vph
∣

∣ = 10, i.e., the magnons are stronger scattered than the phonons. The computed

longitudinal spin Seebeck coefficient (SSC) ζxx [Eq. (2)] is plotted in Fig. 4(a). Switching on

the magnetoelastic coupling increases the SSC especially at the “touching” magnetic fields

HTA and HLA. At these points the group velocity of the magnon is identical to the sound

velocity. Nevertheless, spin transport can be strongly modified when the ratio
∣

∣vmag/vph
∣

∣
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differs from unity. The SSC can be enhanced or suppressed compared to its purely magnonic

value. A high acoustic quality as implied by
∣

∣vmag/vph
∣

∣ = 10 is beneficial for spin transport

and enhances the SSC by hybridization, as illustrated by Fig. 4(a). When magnon and

phonon scattering potentials would be the same, i.e.,
∣

∣vmag/vph
∣

∣ = 1, the anomalies vanish

identically [see blue circles in Fig. 4(a)]. The difference between the calculations with and

without MEC agrees very well with the peak features on top of the smooth background as

observed in the experiments, see Figs. 4(b) and 4(c). We can rationalize the result by the

presence of magnetic disorder that scatters magnons but not phonons.

Finally, we address the SSE background signal. The overall decrease of the calculated ζxx

is not related to the phonons, but reflects the field-induced freeze-out of the magnons (that

is suppressed in thin magnetic films [8]). In the experiments, on the other hand, the global

S below ∼ 30 K clearly increases with increasing H [Fig. 3(c)]. We tentatively attribute this

discrepancy to an additional spin current caused by the paramagnetic GGG substrate that,

when transmitted through the YIG layer, causes an additional voltage. Wu et al. [7] found

a paramagnetic SSE signal in a Pt/GGG sample proportional to induced magnetization (∼

a Brillouin function for spin 7/2) [7]. Indeed, the increase of S in the present Pt/YIG/GGG

sample is of the same order as the paramagnetic SSE in a Pt/GGG sample [8].

In conclusion, we observed two anomalous peak structures in the magnetic field depen-

dence of the spin Seebeck effect (SSE) in Pt/Y3Fe5O12 (YIG) that appear at the onset of

magnon-polaron formation. The experimental results are well reproduced by a calculation

in which magnons and phonons are allowed to hybridize. Our results show that the SSE can

probe not only magnon dynamics but also phonon dynamics. The magnitude and shape of

the anomalies contain unique information about the sample disorder, depending sensitively

on the relative scattering strengths of magnons and phonons.
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FIG. 1: (a) The longitudinal SSE in the Pt/YIG/GGG sample, where EISHE denotes the electric

field induced by the ISHE. The closeup of the upper (lower) right shows a schematic illustration

of a propagating magnon and TA (LA) phonon. (b) Magnon [Eq. (1) with µ0Ms = 0.2439 T,

µ0H = 1.0 T, and θ = π/2], TA-phonon (ω = c⊥k), and LA-phonon (ω = c||k) dispersion relations

for the parameters in Table I. (c),(d) Magnon-polarons at the (anti) crossings between the magnon

and TA-phonon branches at (c) lower and (d) higher wave numbers, where k ‖ x̂ (θ = π/2 and

φ = 0) and H ‖ ẑ.

TABLE I: Parameters for the magnon and phonon dispersion relations of YIG [34–39].

Symbol Value Unit
Exchange stiffness Dex 7.7× 10−6 m2/s
TA-phonon sound velocity c⊥ 3.9× 103 m/s
LA-phonon sound velocity c|| 7.2× 103 m/s
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FIG. 2: (a) Magnon and TA-phonon dispersion relations for YIG when H < HTA, H = HTA,

and H > HTA. (b) V (H) of the Pt/YIG/GGG sample for ∆T = 1.73 K at T = 50 K for

|µ0H| < 6 T. (c) V (∆T ) of the Pt/YIG/GGG sample at µ0H = 0.1 T and µ0HTA. (d) Magnified

view of V (H) around HTA. (e) Magnon, TA-phonon, and LA-phonon dispersion relations for

YIG when H < HLA, H = HLA, and H > HLA. (f) V (H) of the Pt/YIG/GGG sample for

∆T = 1.73 K at T = 50 K for |µ0H| < 10.5 T. The inset to (f) is a magnified view of V (H) for

4.6 µV < |V | < 5.3 µV. (g) V (∆T ) of the Pt/YIG/GGG sample at H = HLA. (h) Magnified

view of V (H) around HLA. The V peaks at HTA and HLA are marked by blue and red triangles,

respectively.
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