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We detect in real time inter-dot tunneling events in a weakly coupled two electron double quantum
dot in GaAs. At finite magnetic fields, we observe two characteristic tunneling times, Td and
Tb, belonging to, respectively, a direct and a blocked (spin-flip-assisted) tunneling. The latter
corresponds to lifting of a Pauli spin blockade and the tunneling times ratio η = Tb/Td characterizes
the blockade efficiency. We find pronounced changes in the behavior of η upon increasing the
magnetic field, with η increasing, saturating and increasing again. We explain this behavior as
due to the crossover of the dominant blockade lifting mechanism from the hyperfine to spin-orbit
interactions and due to a change in the contribution of the charge decoherence.

PACS numbers: 73.63.Kv, 73.23.Hk, 85.35.Gv, 76.60.Es

Electron spins in semiconductor quantum dots are
promising resources for quantum information processing
[1, 2]. Laterally gated dots [3] are especially attractive
due to the flexibility and scalability [4] of their design,
and the possibility to electrically initialize [5], manipu-
late [6, 7], and measure [8, 9] the slowly relaxing [10, 11]
spin states. Pauli spin blockade (PSB) [12] plays a crucial
role in electrical manipulations. PSB is established when
the conservation of spin blocks a transition from an ex-
cited state, where two electrons in two dots have parallel
spins, to the ground state, where they form a singlet in
one dot. The spin can thus be detected by a local charge
sensor as the presence or absence of a charge transition
[13, 14]. The blockade is lifted by spin flips, limiting the
readout fidelities [15, 16], as well as manipulations and
preparations of quantum states.[17, 18]

In GaAs quantum dots, there are two important
sources of electron spin flips: the spin-orbit coupling,
and the hyperfine interaction with spins of atomic nu-
clei. Respectively, they dominate the spin relaxation
time T1[19, 20] and decoherence time T2 [21–23]. Apart
from causing detrimental effects, both of these can be
utilized in quantum state manipulation as a means of
coupling of the electrical control fields to spins [24–27].
It is known that the relative importance of these two
effects changes with magnetic field strength and orienta-
tion [18, 28, 29]. By experimentally resolving the direct
and spin-flip-assisted inter-dot tunneling in real time,
here we investigate the limit that these factors impose on
the effectiveness of PSB. Upon scanning a large range of a
single parameter, the magnetic field, we find a crossover
in their dominance. Fully consistent with our theory,
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FIG. 1. (color online). (a) A scanning electron micrograph
of a sample similar to that measured. (b) Schematics of the
direct and spin-flip-assisted inter-dot tunneling.

these results give guidance on how to increase the PSB
effectiveness with importance for spin readout applica-
tions. We also note that, different to Refs. [20, 30, 31],
we observe a weakly coupled double dot at the charge de-
generacy point. This makes the system independent on
inelastic transitions whose energy dependence, together
with the dynamical nuclear spin polarization, otherwise
result in complex behavior due to non-linearities [32, 33].

Our device is a gate defined lateral double quantum
dot (DQD), Fig. 1(a), weakly tunnel-coupled and iso-
lated from reservoirs, with lead-dot tunneling rates of
order Hz, and the inter-dot tunneling rate of order kHz.
In this regime, where tunnel coupling energies are much
smaller than orbital or charging energies, the two elec-
tron configurations span a basis of five states [34, 35]:
one (02) charge state, the singlet S(02), and four (11)
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FIG. 2. (color online). Typical real time charge sensor signals
of a weakly tunnel coupled DQD at the (11)-(02) degeneracy
for zero (a) and finite (b) magnetic fields. In (a) the signal
shows repeated direct tunneling events, switching the dot be-
tween totally mixed spin states in (11) and the S(02) state.
In (b), spin polarized (11) states are energetically split by a
finite field and blocked in the (11) state, having a longer time
to tunnel into the S(02) state.

charge states, the two spin polarized triplets T±(11), the
unpolarized triplet T0(11), and the singlet S(11). Here
by (NLNR) we denote the left and right dot occupancies
as NL and NR, respectively. Since the exchange energy
splitting among the (11) charge states is negligible, the
four (11) states are degenerate and, in general, energet-
ically separated from the S(02) state by the detuning
energy ∆. The nearby charge sensor can discriminate
different charge states [36]. Using gates L and R, we
tune the dot close to the (11)-(02) degeneracy, ∆ ≈ 0,
by balancing the time averaged occupations of the two
charge configurations, and measure the sensor current
Isensor. With the inter-dot tunneling time set above the
time resolution of the sensor, we monitor in this way the
dot charge configuration in real time.

Figure 2(a) shows random (thermally excited) switch-
ing of charge configurations at zero magnetic field. The
histogram of (11) to (02) tunneling times plotted on the
upper left panel of Fig. 3 shows that the tunneling is de-
scribed by a single time constant T , with the probability
that no tunneling occurs for time δt being exp(−δt/T ).
Despite different spin configurations of the (11) states,
a single tunneling rate into the (02) singlet is expected
due to the hyperfine field of nuclear spins. Indeed, if de-
scribed as a Zeeman term of a slowly fluctuating classical

magnetic field located in the left(right) dot B
L(R)
N [37],

these quasi-static random fields in general couple all five
states. Though the couplings between the (11) and (02)
states are negligible, they are appreciable among the (11)
states (see below). As a consequence, no matter in which
(11) spin state the system starts, within a few nanosec-
onds it contains the S(11) state with an amplitude of

101
102
103
104

C
ou

nt
s

6004002000
Time (ms)

B//  = 0 T
10 ms

101
102
103
104

C
ou

nt
s

6004002000
(11) residing time (ms)

 100 mT
 5.5 ms
 17 ms

101
102
103
104

C
ou

nt
s

6004002000
Time (ms)

 500 mT
 3.7 ms
 64 ms

101
102
103
104

C
ou

nt
s

6004002000
Time (ms)

 1 T
 4.6 ms
 170 ms101

102
103
104

C
ou

nt
s

6004002000
(11) residing time (ms)

 100 mT
 5.5 ms
 17 ms

101
102
103
104

C
ou

nt
s

6004002000
(11) residing time (ms)

 100 mT
 5.5 ms
 17 ms

FIG. 3. (color online). Example histograms of the (11) charge
state residing time for different in-plane magnetic fields. Lines
show the fitted linear trend for zero field and at short, Td, and
long, Tb, times for finite fields (see SM for details of the fitting
procedure).

order 1 from where it can tunnel to S(02). As a result,
within our time resolution, all (11) states tunnel out with
the same rate and there is no PSB.

The charge switching behavior is different at a large
enough external magnetic field B, see Fig. 2(b) for B⊥ =
1.5 T. In addition to the fast switching as in Fig. 2(a),
there are long intervals where the system remains in a
(11) state. This is the Pauli spin blockade: once B > BN ,
the Zeeman energy offset of the polarized triplets sup-
presses their hyperfine induced admixture with S(11) and
by that their tunneling to S(02). Since T0(11) still mixes
fast with S(11), we expect to see two tunneling times, Tb
for spin-flip-assisted tunneling of spin polarized states,
and Td for direct tunneling of spin unpolarized states.
The two processes are sketched on Fig 1(b), and the his-
tograms plotted in Fig. 3 indeed show bi-exponential dis-
tributions for B|| ≥ 100 mT.

We have investigated this PSB manifestation as a func-
tion of the magnetic field strength. In search for generic
features, we measured for various sample cooldowns,
which can change the shape of the dot, and for both in-
plane and perpendicular magnetic fields, by which we iso-
late the strong orbital effects of the latter. Due to the in-
fluence of the AlGaAs barriers [38], the g-factor is small,
|g⊥| < 0.12 for an out-of-plane magnetic field, and, as we
find from the analysis below, about five times smaller for
in-plane fields. (These small values make it easier to an-
alyze the behavior of the rates at small Zeeman energies,
which are pushed to higher magnetic fields by the small
g-factors.) Because of variations in the measurement con-
ditions, there is little systematic dependence of the tun-
neling times taken individually (see Fig. S2 in Ref. [39]).
This is mostly due to the exponential sensitivity of the
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S(11)−S(02) tunneling matrix element τ , which is hard
to keep constant during the re-alignement of the states’
energies required in the measurement course. (This is
also the reason for an irrelevant overall shift of the sen-
sor current seen comparing Fig.2 a and b.) However, in
plotting the ratio η = Tb/Td as in Fig. 4, τ drops out and
a clear trend emerges.

From zero to moderate external fields, η behaves as ex-
pected: initially equal to one, it offsets once the external
field becomes larger than the nuclear field. Here it grows
as η ∝ (B/BN )2, as is well known [20] and can be un-
derstood from a simple perturbation theory (see below).
At higher fields, however, we find that the growth stops
and η saturates. This is not completely unnatural, as it
suggests that the PSB effectiveness is limited by some
process, expected to be eventually the case. However,
moving to even higher fields, η increases again [40]. This
is, however, completely surprising, as it implies that the
limitation disappears. It is also at odds with the gen-
eral behavior of the spin (inelastic) relaxation time T1
between Zeeman split states, which is known to decrease
with the magnetic field (as B−5) as was predicted in the-
ory and confirmed experimentally [10, 19].

We now present a theoretical model explaining these
observations. At the charge degeneracy point, a regime
we explore, the inelastic rates with strong energy depen-
dence, usually due to phonon density of states, play little
role, which is a substantial simplification and difference
to some previous experiments. Let us consider several
ingredients, namely, the interactions with the external,
hyperfine, and spin-orbit fields [41, 42]:

H = H0 +HZ +Hnuc +Hso. (1)

With details in Ref. 39, H0 describes the double dot and
consists of the electron kinetic energy, confinement po-
tential, and Coulomb interaction and defines the Hilbert
space as described above, with the (11) states detuned
from S(02) by ∆ and the two singlets tunnel coupled by
τ ≡ 〈S(11)|H0|S(02)〉. The spin-polarized triplets are
offset by the Zeeman energy ±|gµBB|, which for our g-
factors corresponds to 7 µeV for B⊥ = 1 T and 1.4 µeV
for B|| = 1 T. A typical matrix element of Hnuc within
the (11) subspace is of order 0.1 µeV. Finally, assuming
Hso contains the linear-in-momentum Dresselhaus and
Rashba terms, the only non-zero matrix elements are

〈T±(11)|Hso|S(11)〉 = ±
√

2gµBB
d

λso
. (2)

Here, λso is an effective spin-orbit length, a combination
of the Dresselhaus and Rashba coefficients, and d is half
of the interdot distance, which we estimate to be 130 nm
from typical values of Td [39].

The system dynamics is given by the equation for its
density matrix ρ,

i~∂tρ = [H, ρ] + L[ρ]. (3)
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FIG. 4. (color online). The ratio of tunneling times η as a
function of, respectively, parallel (a), and perpendicular (b),
magnetic field. Lines are fits using the model and parameters
described in the text. The x-axes of the panels are aligned
according to the corresponding Zeeman energies.

The last term is due to charge noise, usually dominated
by fluctuating electric fields of phonons, gate potentials,
impurities, and the charge sensor current. It leads to
a fast decay of charge superpositions, with the decoher-
ence rate Γ, typically several GHz [43]. Denoting a (11)
state as X, and S(02) as S, the charge decoherence is de-
scribed by (L[ρ])XS = −ΓρXS , a form independent of the
(11) subspace basis. We use this invariance to simplify
Eq. (3) by choosing basis states |X〉 in which H is diag-
onal within the (11) subspace. Because of the hyperfine
and spin-orbit couplings, these eigenstates are in general
superpositions of all four (11) states. In this basis, the
remaining off-diagonal matrix elements are the tunneling
terms

τXS ≡ 〈X|H|S(02)〉 = τ〈X|S(11)〉, (4)

which are much smaller than the states’ energy differ-
ences and can be treated perturbatively. In the leading
order, the dynamics given by Eq. (3) reduces to transi-
tions between X and S with the rate

T−1X =
2π

~2

∫
dω

1

π

Γ

Γ2 + (ω − ωXS)2
H2

XS(ω). (5)

For further convenience, we introduce the spectral den-
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sity of the transition matrix element

H2
XS(ω) =

1

2π

∫
dt〈X|H(0)|S〉〈S|H(t)|X〉 exp(iωt).

(6)
For a time independent Hamiltonian, which we con-
sider at the moment, H2

XS(ω) = |τXS |2δ(ω). Inserting
this into Eq. (5) gives Fermi’s Golden rule formula with
the initial and final state difference EX − ES = ~ωXS ,
Lorentzian-broadened by the decoherence.

We fit this model to the data on Fig. 4 by averaging
the rates given by Eq. (5) over hyperfine fields BL,R

N ,
assuming the latter having a Gaussian probability dis-
tribution with zero mean value and dispersion B2

N . The
typical hyperfine field BN , the charge decoherence rate
Γ, and the spin-orbit length λso are fitting parameters.
To take into account the limited accuracy of the detun-
ing and the voltage jitter present in real experiments, we
average over ∆ ∈ 〈0, 12〉µeV, a range corresponding to
the electron temperature [44]. However, the influence of
∆ on the data fit in Fig. 4 is relatively minor. On the
contrary, BN , Γ, and λso have a profound influence and
the energy scales connected to these key quantum dot
spin qubit parameters can be directly read off from the
magnetic field dependence of η, as we now explain.

Let us first assume the detuning is zero, and the hy-
perfine fields are fixed. We order the four |X〉 states ac-
cording to their increasing overlap with S(11). The first
state, denoted by label X, represents a typical blocked
state, while the last, with label X ′, a typical unblocked
state. Using Eqs. (4)–(6), we get the ratio of tunneling
times X(11)↔ S(02), X ′(11)↔ S(02) as

TX
TX′

=
Γ2 + ω2

XS

Γ2 + ω2
X′S

∣∣∣∣ 〈X ′|S(11)〉
〈X|S(11)〉

∣∣∣∣2 . (7)

Take first B = 0. As already explained, the hyperfine
fields fully mix the (11) subspace, so that each eigen-
state typically contains the same amount of admixture
of S(11). Because in addition the Zeeman energy of hy-
perfine fields is negligible compared to ~Γ, the ratio in
Eq. (7) is 1. Once B � BN , the singlet admixture
into the Zeeman split triplets is small, |〈X|S(11)〉|2 ∝
B2

N/B
2. The remaining two states, typically equally

mixed S(11) and T0(11), have |〈X ′|S(11)〉|2 ∼ 1/2. This
gives two tunneling times with the ratio proportional to
B2/B2

N .
The plateau terminating the growth of η at higher

fields (around 0.1 T for B⊥) can be understood as the
spin-orbit taking over the hyperfine field in the matrix
element in Eq. (4). Indeed, whereas the latter is indepen-
dent of B, the former grows linearly, see Eq. (2). This
equation also gives the spin-orbit length as λso ∼ 2d

√
2η

with η the ratio on the plateau.
Increasing the magnetic field further (beyond 1 T for

B⊥), η starts to grow again in Fig. 4. This can be still
reconciled with Eq. (7), as due to the first fraction on

its right hand side. Namely, once the Zeeman energy
becomes larger than the decoherence, the spectral overlap
of spin-polarized (11) states and S(02) drops compared to
spin-unpolarized (11) states. The Zeeman energy where
η starts increasing for the second time gives therefore the
charge decoherence rate ~Γ.

The three energy scales extracted visually as just de-
scribed from the slope changes of η give the values of
parameters BN , λso, and Γ within a factor of order one.
We found that the best way to nail down these factors
quantitatively is straightforward numerics. Namely, for
given values of hyperfine fields, we diagonalize the 4× 4
Hamiltonian in the (11) subspace numerically, and calcu-
late the rates according to Eq. (5). We average these over
typically 106 hyperfine fields random configurations. Be-
cause we cannot distinguish experimentally all four rates,
we define in our numerics the “blocked(direct)” rate as
the average of the first(last) two rates ordered by their
magnitudes.

In this way, we obtain the solid lines in Fig. 4 using
|g|µBN = 1.7µeV, Γ = 7 GHz, and λso = 1.1µm for the
out-of-plane field, and λso = 1.5µm for the in-plane field.
From the value of BN , we can infer the number of nuclei
within the dot volume [45], N = (AI(I + 1)/gµBB)2 ≈
1.2 × 105, using A = 90 µeV, and I = 3/2. All ex-
tracted values are typical for gated dots in GaAs, that
is N [46], the charge decoherence rate [47, 48], and spin-
orbit lengths [10, 49]. We note that the different values of
the effective spin-orbit length fitted for in-plane and out-
of-plane magnetic fields are consistent with directional
anisotropies of λso [50], observed in dot spectra [18], and
spin relaxation [51].

We also considered alternative explanations, examin-
ing inelastic (11) to (02) transitions due to a non-dipolar
electric noise, inelastic (T1) transitions within the (11)
subspace, and lifting the spin-blockade by cotunneling.
As none of these can be naturally reconciled with the
data, we give these details only in Ref. [39].

We conclude by suggesting how to increase the PSB ef-
fectiveness. The spin-orbit effects should be minimized,
what can be achieved by orienting the magnetic field
along certain in-plane directions [52], specified by set-
ting λ−1so = 0 in Eq. (S23) in Ref. [39]. We predict that
the quadratic growth η ∼ B2 will then extend to much
higher fields and increase to B4 once the Zeeman energy
becomes larger than the charge decoherence rate. Finally,
these properties are to a large extent independent of the
value of the interdot tunneling, increase of which should
therefore boost both direct and blocked rates while pre-
serving their ratio.

Upon completion of this work, we became aware of
Ref. [53], where spin-flip assisted interdot transitions
were observed in real time, similar to here. The transition
rates ratio saturation, due to the crossover from nuclear
to spin-orbit dominance of the tunneling, is confirmed
there (at smaller fields due to a larger g-factor) with the
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same interpretation and a similar spin-orbit length, of
order 1 µm, fitted. Different to our results, Ref. [53]
suggests exponential (rather than quadratic) functional
dependence of the ratio on the magnetic field below the
crossover, does not report on behavior at higher magnetic
fields (where we see the second upturn in η) and invokes
inelastic spin-flips to explain the data.
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