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We study the transport properties of frustrated itinerant magnets comprising localized classical moments,
which interact via exchange with the conduction electrons. Strong frustration stabilizes a liquid-like spin state,
which extends down to temperatures well below the effective Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action scale. The crossover into this state is characterized by spin structure factor enhancement at wave vectors
smaller than twice the Fermi wave vector magnitude. The corresponding enhancement of electron scattering
generates a resistivity upturn at decreasing temperatures.

PACS numbers: 72.10.-d,71.20.Be, 71.20.Eh,72.15.v

Certain magnetic metals exhibit a resistivity minimum at
low temperature. The Kondo effect explains this minimum via
an effective exchange interaction J between magnetic impuri-
ties and conduction electrons [1]. Resistivity minima are also
observed in compounds comprising a periodic array of local-
ized magnetic moments such as 4f -electron compounds [2].
Because the Kondo effect is induced by spin-flip impurity
scattering, it is expected to be strongly suppressed in systems
with large local magnetic moments or with strong easy-axis
spin anisotropy. Surprisingly, several compounds in this cat-
egory, such as Gd2PdSi3 and RCuAs2 (R=Sm, Gd, Tb and
Dy) [3–5] and RInCu4 (R=Gd, Dy, Ho, Er and Tm) [6, 7],
exhibit a pronounced resistivity minimum despite heavy sup-
pression of the Kondo effect. These compounds are dom-
inated by the RKKY interaction, which competes against
Kondo screening. It is natural to ask, therefore, if there ex-
ists a general mechanism by which an RKKY interaction can
induce a resistivity minimum [8].

In this Letter, we answer the question affirmatively: frus-
trated itinerant magnets can exhibit a low-T liquid-like spin
state with enhanced resistivity under quite general conditions.
For simplicity, we focus on a 2D Kondo lattice model (KLM)
with classical local moments (no Kondo effect) and a small
Fermi surface (FS). For a circular FS, the bare magnetic sus-
ceptibility χ0

k of the conduction electrons has a flat area of
maxima for k ≤ 2kF (where k ≡ |k| and kF is the magnitude
of Fermi wave-vectors). The RKKY interaction thus seeks
to enhance the structure factor (SF) in the region k ≤ 2kF .
We demonstrate that this effect leads to an increase of the
electrical resistivity, ρ, upon decreasing temperature over the
window T0 . T . |θCW|, where the magnetic correla-
tion length increases from one lattice space a (at |θCW|) to
ξ � a (at T0) [9]. Frustration (|θCW|/T0 � 1) is required
just to open this window, the rest is done by the nature of the
RKKY interaction. The average enhancement of the spin SF
for wave-vectors connecting points on the FS increases the
elastic electron-spin scattering upon lowering T .

The effect of the RKKY interaction on electron transport
was considered in Refs. 10 and 11. The sign of the effect
was found to be opposite (metallic) to that found in this paper.
This difference arises because we consider low filling, where
the sign of dρ/dT can be shown to be insulating under quite
general assumptions about the SF. In contrast, Refs. 10 and 11
considered a large FS, where the effect can have either sign
depending on details of the electronic structure.

We first present an analytical derivation of the effect for the
weak-coupling (WC) limit (Jη(εF ) � 1, where η(εF ) is the
density of states at the Fermi level). The resistivity is eval-
uated in the Born approximation and the spin SF is obtained
in two ways: from a high-T expansion [12] and by using the
spherical approximation [13, 14]. Finally, we perform large-
scale simulations of the full KLM. We use a variant of the Ker-
nel Polynomial Method (KPM) [15–17] to integrate Langevin
Dynamics (LD) and to evaluate resistivity using the Kubo for-
mula [18]. Our KPM-LD simulations on a triangular lattice
(TL) with 2562 sites confirm the WC results and generalize
them to intermediate and strong-coupling regimes.

We consider the KLM

H=
∑
k,σ

(εk − µ)c†kσckσ+
J√
N

∑
q,k,σ,σ′

c†qσσσσ′cq+kσ′ ·Sk. (1)

The operator c†kσ(ckσ) creates (annihilates) an itinerant elec-
tron with momentum k and spin σ. εk = −

∑
δ tδe

ik·δ is
the bare electronic dispersion relation with chemical poten-
tial µ and hopping amplitudes tδ between sites connected by
δ. The second term is the exchange interaction between the
conduction electrons and the local magnetic moments, Sk, in
Fourier space. We assume classical moments with magnitude
|Si| = 1 (σ is the vector of the Pauli matrices).

The conduction electrons can be integrated out in the WC
limit by expanding in the small parameter Jη(εF ). The re-
sulting RKKY spin Hamiltonian is

HRKKY = −J2
∑
k

χ0
kSk · Sk̄, (2)



with k̄ ≡ −k and Sk =
∑
l e
ik·rlSl/

√
N (N is

the total number of lattice sites). The effective coupling
constant in momentum space is −J2χ0

k , with χ0
k =

T
∑
q,ωn

G0
q,ωn

G0
q+k,ωn

, where ωn = (2n + 1)πT are the
Matsubara frequencies and G0

k,ωn
= {iωn − [εk − µ]}−1 is

the bare Green’s function. Then, the RKKY interaction favors
magnetic orderings which maximize χ0

k.
The electrons feel an effective potential produced by the

spin configuration through the exchange interaction J . If the
system orders at low-enough temperature, (T ≤ Tc), the pe-
riodic array of spins only produces coherent electron scatter-
ing, which does not contribute to ρ [19]. However, the sit-
uation changes above Tc because the magnetic moments de-
velop liquid-like correlations, which produce incoherent elas-
tic electron-spin scattering. Within the Born approximation,
the scattering cross section is proportional to the spin SF,

S(k) =
1

N

∑
jl

eik·(rj−rl)〈Sj · Sl〉 = 〈Sk · Sk̄〉, (3)

where 〈...〉 denotes the thermodynamic average. S(k) satis-
fies the sum rule

∑
k S(k) = N because |Si| = 1. Unlike the

high-T “gas” regime, characterized by a nearly k-independent
spin SF, short-range magnetic correlations appear in the liquid
regime. The RKKY interaction is expected to enhance S(k)
for wave-vectors connecting points on the FS because those
are the processes that more effectively reduce the electronic
energy. Given that the same processes contribute to the in-
coherent elastic scattering in the paramagnetic state, ρ should
increase upon reducing T from the high-T “gas” regime to the
T0 . T . |θCW| ∼ J2/t liquid-like regime.

To illustrate this point we will consider the simple case of
a circular FS, relevant for most 2D lattices with low elec-
tron (hole) filling fraction [20]. The dispersion relation near
the bottom (top) of the band can be approximated by εk '
k2/2m. The resulting RKKY Hamiltonian is strongly frus-
trated: any spiral with wave-vector k is a ground state as long
as k ≤ 2kF . The RKKY interaction favors these magnetic
configurations because those are the only spirals which can
scatter electrons between points, q and q + k, on the FS.

Within the Born approximation, the inverse relaxation time
for elastic scattering is:

1

τkF
=

4πJ2

N

∑
k

δ(εF −εk)S(k−kF )(1−cos θkF ,k). (4)

This expression is further simplified if S(k) = S(k), which
is a good approximation for low carrier filling fractions in the
integration domain k < 2kF :

1

τkF
= 4πmJ2c

∫ 1

0

dx
x2

√
1− x2

S(2kFx), (5)

where c is a number that depends on the lattice, e.g., c =√
3/π2 for TL. The T -dependence of τkF is then determined

by the variation of S(k) for k ≤ 2kF .
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FIG. 1. Bare electronic susceptibility for (a) a 2D electron gas with
isotropic dispersion εk = k2/2m, and (b) a TL with NN hopping
t = 1 and filling fraction n = 0.09. Panels (c)–(f) show momentum
dependence of S(k) at temperatures T = {0.03, 0.06, 0.45}J2/t
represented by solid, dashed and dotted curves, respectively. (c) and
(d) are obtained from the high-T expansion in Eq. (6), while (e) and
(f) are obtained from the spherical approximation. Each panel is cal-
culated using the bare magnetic susceptibility vertically above it. For
panels (d) and (f) we assume S(k) ' S(k), which is correct to
within 1% relative error.

We will use two independent approaches for computing the
T -dependence of S(k) in the gas and liquid-like regimes. The
first approach is a straightforward high-T expansion [12]:

S(k) = 1 +Kχ̃k +K2
[
χ̃2
k − 〈χ̃2〉

]
+K3

[
χ̃3
k − 〈χ̃3〉

−2χ̃k〈χ̃2〉+
2

5N2

∑
qq′

χ̃qχ̃q′ χ̃k−q−q′
]
, (6)

with K = 2J2β/3, χ̃k = χ0
k − 〈χ〉 and 〈χ̃n〉 =

∑
k χ̃

n
k/N .

Fig. 1(a) shows the bare magnetic susceptibility for the
isotropic FS under consideration. Fig. 1(b) shows the bare
susceptibility for a TL with nearest-neighbor (NN) hopping t
and electron filling fraction n = 0.09 (the mass is m = 1/3t).
As expected, the effect of the small C6 lattice anisotropy (of
order k6

F ), is to split the large global maxima degeneracy that
would correspond to isotropic χ0

k. We will see that this split-
ting does not alter significantly the window of stability of the
liquid-like regime. Figs. 1(c) and (d) show the momentum
dependence of the SF at different temperatures obtained from
Eq. (6) for the isotropic FS and triangular KLM, respectively.

To understand the insulating sign of the temperature depen-
dence of 1/τ , it suffices to analyze the second term in Eq. (6),
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which gives the leading order contribution to the momentum
dependence of S(k). Since χk > 0, the prefactor of the 1/T
term in 1/τ is positive as long as the average of χk over the
interval (0, 2kF ) in Eq. (5) exceeds the contribution from 〈χ〉,
which is just a constant times 〈χ〉. Suppose that χ0

k does not
vary dramatically in the interval (0, 2kF ), where it can be
estimated by some typical value χ̄, and falls off quickly for
kF � k � b, where b ∼ 1 is the reciprocal lattice spacing.
Then the contribution of χ0

k to the integral in Eq. (5) is on the
order of χ̄. On the other hand, 〈χ〉 is an average value over
the entire Brillouin zone, normalized by its area. Therefore,
〈χ〉 ∼ χ̄(kF /b)

2, and the contribution from χ0
k is reduced

only by a small correction of order (kF /b)
2 [21].

Compared with the high-T expansion, the so-called spher-
ical approximation [13, 14] is less well controlled, but can
be applied to a wider temperature range. The hard con-
straints |Si| = 1 are replaced with a global soft constraint,∑
i |Si|2 = N , which renders the spin Hamiltonian quadratic

and can be easily integrated to give: S(k) = 3T
2[∆(T )−J2χ̃k] ,

where ∆(T ) is determined from the self-consistency equa-
tion [21]: 1

N

∑
k J

2/[∆(T ) − J2χ̃k] = K. Figs. 1(e) and
(f) show that the results for the isotropic FS and the triangular
KLM agree with Figs. 1(c) and (d) down to T ' 0.03J2/t, at
which point the high-T expansion fails.

The electrical conductivity is given by

σ = −e
2

2

∫ √
3d2k

8π2
τkv

2
k

df(εk)

dεk
' 3
√

3e2

8π
tk2
F τkF . (7)

Replacing τkF with its expression given in Eq. (5), we obtain

ρ(T ) =
4

π
ρ0

∫ 1

0

dx
x2

√
1− x2

S(2kFx), (8)

where ρ0 = 8πJ2/(3tekF )2. Fig. 2(a) compares the resis-
tivity curves, ρ(T ), obtained from the high-T expansion and
from the spherical approximation. As expected from the com-
parison of the magnetic SF, the resistivity curves practically
coincide down to T ' 0.03J2/t. Both curves confirm our
main conjecture: dρ/dT < 0 because the system develops
stronger spin-spin correlations for wave-vectors k ≤ 2kF .
This increase should be interrupted at T = T0 where precur-
sors of magnetic Bragg peaks develop from the broad peaks of
the liquid state and the Born approximation ceases to be valid.

The analytical approach that we have used for comput-
ing ρ(T ) is only valid in the WC regime. Away from WC,
RKKY is no longer valid as an effective low-energy theory
for the KLM and the Born approximation is no longer jus-
tified. Moreover, the two different approaches that we used
for computing S(k) fail at low T . Our calculations then need
to be complemented with numerical simulations valid for any
coupling strength and down to arbitrarily low T .

We perform KPM-LD simulations on a 256 × 256
TL with small electron filling n = 0.09 and J/t =
(0.2, 1.0, 1.5, 2.0) [23]. We integrate dimensionless stochas-
tic Landau-Lifshitz dynamics with unit damping parameter
using the Heun-projected scheme [24] for a total of (2 ×
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FIG. 2. (a) Temperature dependence of the resistivity for a triangular
KLM with NN hopping (t = 1) and filling fraction n = 0.09. The
lines correspond to calculations based on the the Born approxima-
tion [see Eq. (8)] and different analytical approaches for computing
the temperature dependence of S(k). The symbols correspond to the
results of KPM-LD simulations rescaled by ρ(T = J2/t). (b) Re-
sistivity curve (in units of h/e2) obtained from KPM-LD simulations
for different coupling strengths [22].

103, 4 × 103, 6 × 103, 1 × 104) time-steps of duration ∆τ =
(100, 10, 5, 2). We estimate effective spin forces using the
gradient transformation described in Ref. 16. To decrease
stochastic error, we use the probing method of Ref. 25 with
R = 128 random vectors. The Chebyshev polynomial expan-
sion order isM = 500. To calculate the resistivity, we expand
the Kubo-Bastin formula [18, 26] using KPM [15, 27] with
M = (6000, 1000, 1000, 500) [28]. For each temperature, we
average the longitudinal conductivity over 10 snapshots sepa-
rated by (100, 100, 200, 500) integration time-steps.

Fig. 2(b) shows the numerical ρ(T ) results for the differ-
ent J/t values. Frustration decreases with J/t because higher
order contributions (beyond RKKY ) split the degeneracy for
k ≤ 2kF . For the strong-coupling limit, J � t, the low-
energy sector of H can be mapped into a double-exchange
model, which favors ferromagnetic (FM) ordering at a critical
temperature, Tc, comparable to |θCW|. Given that the tem-
perature window with liquid-like correlations diminishes as a
function of J/t, the relative low-temperature upturn of ρ(T )
should also decrease, as shown in Fig. 2(b).

In the intermediate-coupling regime, J/t = 1, 1.5 and 2,
the low-T upturn of ρ(T ) reaches a maximum at temperature
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T0 and drops rapidly for T < T0. This crossover corresponds
to the enhanced SF at wavevectors k < 2kF . Figs. 3(a) and
(b) show the temperature dependence of S(k) for J/t = 1
and 2, respectively. The roughly uniform weight of S(k) for
k < 2kF starts redistributing below T ≈ 0.006J2/t. When
J/t ≈ 1 we observe the formation of a ring in Fourier-space at
T ≈ T0. This disordered phase is dynamically trapped at the
lowest temperatures, T . 0.002J2/t. As expected from the
strong-coupling analysis, its radius k0 < 2kF decreases with
J/t. For larger couplings, J/t & 2, the FM phase clearly wins
at low T . We note that, for T > T0, there is strong backward
scattering produced by k . 2kF components of S(k). The
resistivity drops below T0 because the back scattering contri-
bution (k = 2kF ) is reduced by the formation of a ring at
k0 < 2kF [see the integrand of Eq. (8)].

Here we have only considered the resistivity component
arising from electron-spin scattering. Electron-electron and
electron-phonon scattering also contribute to ρ in real materi-
als. These additional contributions increase with T , whereas
we have argued that the electron-spin scattering produces a
negative dρ/dT . The combination thus yields a resistivity
minimum [29]. Although we have assumed classical local
spins (S → ∞), our results can be extended to arbitrary S.
The generalization of Eq. (6) is straightforward [30]. The
main qualitative change is the Kondo effect expected for quan-
tum spins and antiferromagnetic exchange J . This effect be-
comes apparent by applying the T-matrix formalism up to or-
der J3 to the KLM [21], which yields:

ρ(T ) ≈ ρRKKY(T ) ·
[
1− 8Jη(εF ) ln

(
kBT

D

)]
, (9)

where ρRKKY(T ) is given in Eq. (8). ρRKKY(T ) becomes T -
independent at T � |θCW|, so the only T -dependence arises
from the Kondo effect. According to Eq. (9), the Kondo loga-
rithmic behavior crosses over into a power law [21]:

ρRKKY(T ) ∼ a

T − T ∗
+ b, (10)

upon entering the range T0 . T . |θCW|. The qualitatively
different T -dependence should allow to distinguish between
the two mechanisms for resistivity upturn. Moreover, the up-
turn produced by the RKKY mechanism should be accom-
panied by a corresponding upturn in the correlation length
ξ. Indeed, moderately frustrated materials, such as Gd2PdSi3
and RCuAs2 (R=Sm, Gd, Tb and Dy) [3–5], exhibit a non-
logarithmic resistivity upturn right above the Néel tempera-
ture. According to Refs. [31, 32], the resistivity minimum of
the pyrochlore oxides Pr2Ir2O7 and Nd2Ir2O7, is also caused
by spin-spin correlations described by the spin ice model.

Furthermore, the Kondo effect is absent in transition metal
oxides, where J is FM (Hund’s coupling). Our results in-
dicate that the resistivity upturn persists in the intermediate
coupling regime, relevant to these materials. Indeed, a resis-
tivity upturn has been observed in (Ga1−xMnx)As [33, 34]
and manganites [35] above the FM transition temperature Tc.

FIG. 3. Structure factor S(k) for three temperatures at intermediate-
couplings (a) J/t = 1 and (b) J/t = 2. At T ≈ 0.02J2/t, S(k)
is nearly uniformly distributed in the disc k . 2kF . Around T ≈
0.006J2/t the weight begins shifting toward a k . 2kF radius ring
(J/t ≈ 1) or k = 0 FM order (J/t & 2).

Our key conclusion is that the RKKY interaction enhances
the elastic electron-spin scattering by increasing the magnetic
SF for wave-vectors connecting points on the FS. Assuming
that this enhancement eventually leads to Bragg peaks (for
T < Tc), which do not produce incoherent scattering, frus-
tration is necessary to open a wide enough temperature win-
dow (liquid-like regime), over which the resistivity upturn be-
comes noticeable. Although we have focused on 2D systems
with a small FS, the conclusion applies generally to frustrated
itinerant magnets, provided that χ0

k is larger on average for
wave-vectors k connecting points on the FS.
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