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Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials
to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically
undesired features in all such experiments where solid materials are rapidly accelerated to high
velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate
the RTI. We suggest an approach to implode solid metal liners enabling a remarkable reduction
in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic
polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic
framework, demonstrate that the in-flight growth of the most deleterious MRTI modes may be
reduced by as much as one to two orders of magnitude. One key application of this technique is to
generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion
[M. R. Gomez et al., PRL 113, 155003 (2014)]. We weigh the potentially dramatic benefits of the
solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired
drive field history and identify promising designs for future experimental and computational studies.

In this Letter, we describe a novel approach to sup-
press the growth of detrimental Rayleigh-Taylor instabil-
ities (RTI) [1, 2] in rapidly imploding, cylindrical metal
shells (“liners”). In high energy density (HED) and iner-
tial confinement fusion (ICF) research, RTI are pervasive
and usually undesired. Enabled by the world’s leading
pulsed-power facilities, including the 26 MA, 80 TW “Z”
Facility at Sandia National Laboratories [3], magnetically
driven implosions of solid liners are an efficient approach
to study HED [4] and ICF [5–7] physics. However, such
implosions require multi-Mbar pressures surpassing the
yield strength of the initially solid targets, resulting in
accelerating, convergent shells of electrically conducting
fluid subject to magnetically enhanced RTI (MRTI) [8].

The severity of MRTI necessitates the use of initially
thick, massive liners to maintain the shell’s integrity in
flight [4, 5]. Reducing MRTI growth could enable the
use of thinner (and possibly higher-density) liners, in-
creasing achievable peak shell velocities, stagnation pres-
sures, and/or fuel confinement times. Extensive exper-
imental and computational work has examined the for-
mation [9–12] and evolution [5, 13–18] of MRTI in metal
liners. Several authors also examine RTI in cylindrical
shells analytically [8, 19–24]. Specifically, Velikovich &
Schmit (V&S) [24] describe MRTI in thick shells com-
posed of ideal fluid. V&S asymptotically recovers the
behavior of MRTI in various limits described in previous
works [8, 20, 22], while it also includes the so-called “Bell-
Plesset effects” [25, 26] accounting for the convergent
motion of the shell. Importantly, V&S provides a self-
consistent framework to analyze (linear) MRTI in thick
conducting shells.

Given their virulent nature, methods to mitigate RTI
abound. In both laser “indirect-drive” [27–32] and
“direct-drive” [33–35] spherical capsule implosions, RTI

is controlled via ablative stabilization [36–42]. However,
stabilizing mass ablation does not occur in magnetically
driven liner implosions. In diffuse z-pinches, MRTI is
controlled by mass accretion [43] or by tailoring the ini-
tial density [44, 45] or velocity shear [46, 47] profiles. Yet,
these methods are not easily applicable to the relatively
slow implosions of dense metal shells. On the other hand,
coating metal liners with an insulator appears to improve
liner stability by modifying the electrothermal instability
(ETI) [9, 10, 18] and suppressing early-time density mod-
ulations of the liner’s outer surface. Like high-Z coatings
[48, 49] and mid-Z doping [50–52] for direct-drive and
adiabat shaping [53] for indirect-drive spherical capsule
implosions, ETI mitigation lowers the seed amplitude for
MRTI, which later grows exponentially in flight.

Magnetic shear also suppresses MRTI [54]. In pinches,
the most deleterious instabilities are interchange modes
[8], satisfying κ · B = 0. Here, κ is the perturbation
wavevector, and B is the magnetic field. Interchange
modes rearrange magnetic field lines without bending
them, thereby avoiding magnetic tension effects that
would otherwise increase the energy cost and slow the
growth of perturbations. Sufficient directional shear of
B within magnetized plasma ensures κ ·B 6= 0 for all κ,
suppressing interchange modes and enhancing stability.
However, for metal liners driven by short [O(100 ns)],
intense electrical pulses, the shell thickness, ∆, typically
greatly exceeds the corresponding magnetic skin depth.
Thus, most of the drive field remains near the liner’s
outer surface, precluding the formation of a stabilizing
sheared B profile within the bulk liner material.

To stabilize MRTI in solid liner experiments, we pro-
pose redirecting the ambient power flow in a helical di-
rection, whereby dynamic axial and azimuthal field com-
ponents are generated simultaneously near the liner’s
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outer surface, forming a solid liner dynamic screw pinch
(SLDSP). The external drive field generates a stabiliz-
ing surface tension at the vacuum-liner interface, Teff ≈
(µ0/2πκ

3)(κ ·B)2 [19], where |κ| = κ. Nevertheless, the
interchange modes (κ ·B = 0) once again evade stabiliza-
tion. In z-pinches, these are the azimuthally-symmetric
“sausage” modes [15, 16], which satisfy κ·B = 0 through-
out the implosion. Yet, the helical interchange modes
of the SLDSP always develop a field-aligned component
(and finite Teff) in flight. The absence of magnetic shear
in the SLDSP allows pure interchange modes to exist
momentarily, but the apparent rotation of magnetic field
lines near the outer surface of the SLDSP preferentially
drives a continuously varying spectrum of interchange
modes in flight, remarkably reducing the growth of the
most damaging modes by as much as O(101-102).

Figure 1 shows an implementation of this strategy
for the Magnetized Liner Inertial Fusion (MagLIF) con-
cept [5–7]. Helically twisted return current posts form

a solenoid, so the liner sees B[r = rl(t)] = Bφ(t)φ̂ +

Bz(t)ẑ ≈ µ0I(t)[(1/2πrl(t))φ̂ + ncẑ], where I is the
liner axial current, rl is the liner’s unperturbed outer ra-
dius, and nc is the turns-per-unit-length of each post.
The polarization of B at r = rl(t) obeys θB(t) =
tan−1(Bz/Bφ) = tan−1[2πncrl(t)], rotating toward the
equatorial plane of the liner during the implosion. The
perturbation wavevector, κ = (m/rl)φ̂+ (2πk/L)ẑ, also
rotates toward the equatorial plane and increases in mag-
nitude during the implosion when m 6= 0. Here, L is
the axial length of the liner, and k and m are the in-
teger axial and azimuthal mode numbers, respectively.
Initially, the most unstable (interchange) modes satisfy
m = −[2πrl(0)]

2nck/L 6= 0, but they quickly obtain a
field-aligned component and finite Teff in flight accord-
ing to d/drl(κ ·B) = −µ0mI/πr3l .

Dynamic Bz generation in thin foil [12], gas puff
[55, 56], and wire array [57] experiments demonstrated
qualitative impacts on stability. However, detailed analy-
ses of these experiments are lacking, and our understand-
ing of MRTI in these complex systems is either cursory
[58, 59] or nonexistent. Furthermore, no enhancement of
x-ray/neutron production was observed in these systems.
For each of these experiments, significant magnetic field
penetration into the target is possible (and often mea-
sured [12, 57]), invalidating a simple ideal MHD picture
and suggesting that magnetic shear may play a role, but
this remains an open question. In stark contrast, thick
metal liners are much more amenable to an ideal MHD
treatment like V&S, and the dominant physics influenc-
ing the MRTI—including the dynamic-polarization sta-
bilization exhibited by the SLDSP—is less ambiguous.
Also, unlike other pinches utilizing helical currents [55–
57], the SLDSP could significantly enhance the perfor-
mance of magnetic direct drive ICF experiments.

We demonstrate the remarkable stabilizing effect of

FIG. 1: Example solid liner dynamic screw pinch (SLDSP)
design for MagLIF, compared to present-day MagLIF. The
slotted return current can is replaced with a helically ma-
chined can. Direction of current flow is indicated by magenta
arrows. Preheat laser enters target from above. Insets show
the drive magnetic field orientation for each target and define
the polarization angle, θB . (Note: θB also includes contribu-
tion from any applied external Bz field, not shown here.)

the SLDSP using the self-consistent V&S model for lin-
ear MRTI in thick, magnetically driven cylindrical shells
of incompressible, perfectly conducting fluid [24]. We
choose the initial aspect ratio AR = rl0/∆ = 24, initial
outer radius rl(0) ≡ rl0 = 2.79 mm, and shell mass den-
sity ρ = 6930 kg/m3, such that rl0 and the line mass
density resemble present-day MagLIF experiments us-
ing thick (AR = 6) beryllium liners [7]. The AR = 24
incompressible shell maintains a similar rl(t) history as
the thicker, compressible MagLIF liners, improving sur-
rogacy with present-day experiments. Figure 2(a) shows
the liner trajectory and drive pressure history for the
“null” case with straight return current posts, calculated
using a realistic circuit model for Z [60]. Like MagLIF,
an initial axial field Bz = 10 T exists outside and inside
the shell, but here its only dynamical significance is to fa-
cilitate stagnation via a brief (≈ 1 ns) surge in magnetic
back-pressure at the liner’s inner surface, r = rg(t), due
to flux compression [61]. During the acceleration-MRTI
phase, Bz is too weak to provide any shear stabilization.

Figure 2(b) shows the MRTI e-folding spectrum,

Γmk =
∫ t2

t1
γmk(t

′) dt′, for the null case, nc = 0. Note,

perturbation quantities grow as ξ(t2) ≈ ξ(t1) expΓmk.
The time interval [t1, t2] signifies the main acceleration-
MRTI phase, from the time the liner undergoes 1% rel-
ative displacement (t1) to a “mixed” deceleration onset
time (t2), halfway between the onset of deceleration of
the liner’s inner and outer surfaces. Here, γmk is the
V&S instantaneous exponential growth rate for mode
numbers (m, k) [62]. Supplemental Material contain-
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FIG. 2: (a) AR = 24 incompressible liner trajectory (blue fill)
and magnetic pressure history at liner’s outer surface, pout.
Red shading shows MRTI calculation interval. Inset: mag-
netic field polarization angle, θB(t) = tan−1(Bz/Bφ), near the
liner’s outer (unstable) surface for several SLDSP scenarios.
Dashed black line is null case, nc → 0 and initial Bz = 10 T.
(b) Spectrum of MRTI e-foldings, Γmk, for null case. Dashed
black lines show exact solutions, Γexact ∈ {6, 8, 10}. Dashed
white lines indicate λ(t2), i.e., the MRTI mode wavelength
(in µm) at the end of the MRTI calculation.

ing the formulae used to compute γmk accompanies this
manuscript. We also show contours of the exact solutions
Γexact ∈ {6, 8, 10} [63], suggesting that our use of an in-
stantaneous, exponential growth rate is reasonable. As
expected, the m=0 modes are the most unstable [8].

We examine the stability of the SLDSP by varying nc

while maintaining the same pressure history, pout(t) =
(B2

φ + B2
z )r=rl/(2µ0), and liner trajectory as the null

case in Fig. 2(a). The Fig. 2(a) inset shows θB(t) for
several SLDSP scenarios, where ncL ∈ [0.2, 10]. Fig-
ures 3(a,b) show Γmk for the cases ncL = 0.33 and
1.0, respectively. Early in time, Bz & Bφ, with Bz

rapidly exceeding 100 T before MRTI commences and
peaking atO(1000 T). Here, θB(t1) & π/4, and the inter-
change modes (κ ·B = 0) are initially helical (m, k 6= 0).
Yet, Bφ always becomes dominant, so dθB/dt < 0, and
these modes quickly generate field-oriented components
in flight. Figures 3(a,b) both show reduced MRTI growth
compared to the null case, Fig. 2(b), and Fig. 3(b) repre-
sents a near-optimum among the cases considered here.
When ncL ≫ 1 (the θ-pinch limit), the k = 0 “flute”
modes exceed the growth of the helical MRTI. Note from
the Fig. 3 insets that the flux-compressed Bz inside the
liner is ≪ Bφ for most of the implosion, so shear stabi-
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FIG. 3: Spectra of MRTI e-foldings, Γmk, for liner trajectory
and drive pressure history shown in Fig. 2(a), but with (a)
ncL = 0.33 and (b) ncL = 1.0. Lower and upper thick, solid
lines in Fig. 2(a) inset show θB for (a) and (b), respectively.
Dashed black lines show exact solutions, Γexact ∈ {6, 8, 10}.
Dashed white lines indicate λ(t2), i.e., the MRTI mode wave-
length (in µm) at the end of the MRTI calculation. Insets:
Bφ (solid, red) and Bz (dashed, red) at r = rl(t) of SLDSP
relative to Bφ for the null case (solid, blue) and the flux-
compressed Bz inside the liner (dashed, blue).

lization is absent.

The SLDSP reduces Γ200 ≡ max({Γmk : λ(t2) =
200 µm}) by as much as δΓ200 = −5.1 relative to the
null case [64], a 170-fold reduction of the (linear) mode
amplitude at this wavelength. |δΓ| diminishes at longer
wavelengths, since the stabilizing surface-tension effect
scales like KTeff ∝ κ2Teff ∝ κ, where K is the perturbed
interface curvature [19]. For Fig. 3(b), δΓ400 = −2.8 (18
in terms of amplitude) and δΓ1000 = −1.1 (3 in terms
of amplitude). Hence, the SLDSP reduces acceleration-
MRTI growth by O(101-102) in the λ = O(∆) band.
Simulations suggest that modes with λ ≪ ∆ do not
contribute substantially to the observed MRTI growth
in experiments [15], while modes with λ ≫ ∆ do not
grow quickly enough to impact the implosion quality sub-
stantially. Intermediate-wavelength modes balance fast
growth with significant “feedthrough,” whereby pertur-
bations of the unstable outer surface during acceleration
leave an imprint on the inner surface, smaller in ampli-
tude by roughly exp(−κ∆) [8, 65]. These inner-surface
perturbations destabilize during deceleration, inhibiting
the conversion of liner kinetic energy to fuel thermal en-
ergy and exacerbating mix of liner material into the fuel.

In experiments, practical constraints may prevent the
realization of some SLDSP solutions. The dynamic Bz
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FIG. 4: Evaluation of MagLIF platform stability and perfor-
mance incorporating SLDSP techniques. (a) MRTI e-folding
reduction (δΓ) relative to the null case for λ(t2) = 200 µm
by varying the return current radius, rrc, and coil pitch,
d = 1/nc. Rightmost solid/dashed lines (cyan) are, respec-
tively, the thresholds for ≤ 8 nH initial load inductance and
1D neutron yields ≥ 90% relative to the null case. Left-
most solid/dashed lines (blue) assume a 2 nH load induc-
tance reduction by other means. (Note: d → ∞ in null case.)
(b) AR = 6 beryllium liner trajectory (solid fill) and drive
pressure history (solid line) representing present-day MagLIF
(null case), and trajectory (hatched fill) and pressure history
(dashed line) for SLDSP with ncL = 0.5 and 2 nH load induc-
tance reduction, corresponding approximately to the target
geometries shown in Fig. 1. Red shading indicates MRTI cal-
culation interval for null case. Filled circles in (a) correspond
to parameters for similarly filled trajectories in (b).

generation increases the total load inductance seen by
the pulsed power driver, reducing the peak current that
can be coupled to the load and potentially exacerbat-
ing current losses elsewhere in the system [66–68]. Ac-
cordingly, SLDSP designs must balance enhanced liner
stability with potentially diminished driver-target cou-
pling. Optimizing a particular design will require some
combination of detailed 3D simulations and experimen-
tal platform validation, which are beyond the scope of
this initial study. Numerical 3D calculations could com-
pliment our theoretical analysis by assessing the impor-
tance of finite liner resistivity and compressibility effects,
nonlinear mode saturation, and mode-mode coupling of
the MRTI. (Note that unlike other RTI mitigation tech-
niques amenable to 2D analyses, e.g., [38, 41, 43, 44], the
SLDSP is a distinctly 3D object.)

Instead, we show here that a plausible design space ex-

ists for one important system–MagLIF [5–7]–where the
SLDSP could outperform the present-day experimental
platform [7] due to 3D MRTI stabilization. We modi-
fied the recently developed Semi-Analytic MagLIF Model
(SAMM) [60, 69] to consider the SLDSP scenario de-
picted in Fig. 1. The Z equivalent circuit model (Sec. II-
B of [60]) is augmented so that the dynamic inductance
of the liner (Lv(t) = (µ0L/2π) ln[rrc/rl(t)], where rrc is
the radius of the return current posts) is driven in series
with an ideal solenoidal circuit element with inductance
Ls(t) = π[r2rc−r2l (t)]µ0Ln

2
c, representing the effect of the

twisted posts. To achieve lower inductances, we examine
rrc below its nominal value of 13 mm. We also automate
the design of power feeds accommodating the reduced rrc
as illustrated in Fig. 1, changing the static inductance L0

in the circuit model [60]. Finally, we estimate additional
current losses using a shunt resistor model developed for
MagLIF loads [70], which typically restricts peak cur-
rents to 17-18 MA in present-day experiments. Driving
the circuit with Z’s nominal 130-ns open-circuit voltage
waveform, a variety of drive pressure histories and com-
pressible liner trajectories can be considered.

Figure 4(a) compares the stability of the SLDSP with
present-day MagLIF experiments. To estimate MRTI
growth, we use the liner’s outer surface dynamics (rl
and its time derivatives) given by SAMM in γmk and
prescribe the time derivatives of rg(t) assuming the
liner is instantaneously incompressible; e.g., drg/dt =
(rl/rg)drl/dt. Although the analysis is no longer self-
consistent, reasonable accuracy is obtained, since the mo-
tion of the unstable surface, rl(t), predominantly sets
γmk during acceleration-MRTI. To help identify promis-
ing SLDSP designs, we plot the thresholds for similar 1D
fusion yields (≥ 90%, according to SAMM) and load in-
ductances (≤ 8 nH) relative to present-day experiments.
Yields are a sensible surrogate for the total work done on
the preheated fuel, while the inductance threshold repre-
sents an approximate limit where we expect our current
loss models to be predictive. Ongoing efforts suggest
that load inductance reductions of 2-3 nH are achiev-
able through improved hardware design, so we also plot
these thresholds assuming an additional 2 nH reduction
by other means, allowing for more aggressive SLDSP de-
signs (i.e., greater ncL). Promising design parameters
are found to the right of these curves in Fig. 4(a).

Subject to these yield and inductance thresholds,
Fig. 4(a) shows |δΓ200| . 5, while |δΓ400| . 3 (not
shown), so the growth of the λ = O(∆) modes is once
again reduced byO(101-102). Optimal designs favor min-
imizing rrc and only modest turning of the return current
posts over the height of the liner (ncL < 1). Figure 4(b)
compares the calculated liner trajectories and drive pres-
sure histories of a present-day MagLIF experiment with a
promising SLDSP solution, corresponding approximately
to the two configurations shown in Fig. 1. Although
the peak drive pressure of the SLDSP is slightly lower
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than the null case, stagnation occurs almost 10 ns ear-
lier. Both cases have similar initial load inductance and
early-time load current histories (until t ≈ 1.6× 10−7 s),
yet the dynamic Bz generated by the SLDSP increases
the drive pressure by [1+ (2πrlnc)

2] for a given load cur-
rent, leading to faster acceleration of the liner. Although
an analysis of other perturbing mechanisms like the elec-
trothermal instability [9, 10, 18] is not included here, the
steeper initial dpout/dt may provide less time for instabil-
ities like ETI to develop [9], further enhancing stability.

By tuning the polarization of the magnetic drive, the
solid liner dynamic screw pinch (SLDSP) offers a new
pathway to enhance the implosion stability of thick metal
liners dramatically, enabling higher-performancemagnet-
ically driven implosions for high energy density and in-
ertial confinement fusion research. The SLDSP magnet-
ically stabilizes the most deleterious Rayleigh-Taylor in-
stability modes in flight, potentially reducing their cu-
mulative growth by O(101-102). Analysis of the trade-
offs between enhanced stability and diminished current
delivery in experiments points toward an immediate ap-
plication space on drivers like Z.
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