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We study the properties of edge plasmons in two-component electron liquids in the presence of
pseudomagnetic fields, which have opposite signs for the two different electronic populations and
therefore preserve the time-reversal symmetry. The physical realizations of such systems are many.
We discuss the case of strained graphene, solving the problem with the Wiener-Hopf technique. We
show (i) that two charged counter-propagating acoustic edge modes exist at the boundary and (ii)
that, in the limit of large pseudomagnetic fields, each of them involves oscillations of only one of the
two electronic components. We suggest that the edge pseudo-magnetoplasmons of graphene can be
used to selectively address the electrons of one specific valley, a feature relevant for the emerging field
of valleytronics. Our solution highlights new features missing in previous (similar) results obtained
with uncontrolled approximations, namely a logarithmic divergence of the plasmon velocity, and the
absence of gapped edge modes inside the bulk-plasmon gap.

PACS numbers: 73.22.Pr,12.39.Dc,73.20.Mf

Introduction—Nanoplasmonics, [1] which aims at com-
pressing electromagnetic radiation to sub-wavelength
scales by coupling it to matter waves, has recently expe-
rienced a strong revival [2–4] with the discovery of two-
dimensional (2D) materials. [5–15] Atomically-thin layers
of van-der-Waals solids exhibit many remarkable and in-
triguing properties: [11–13, 16] they allow to confine the
radiation at a surface, coupling it with mobile electrons
and forming surface-plasmon polaritons. [2, 15, 17, 18]
In this respect, graphene has attracted a lot of interest,
especially for its record-high plasmon lifetimes: [14, 15]
plasmon losses have indeed represented so far the funda-
mental bottleneck for nanoplasmonic applications. [19]

When a perpendicular magnetic field is applied to
a 2D charged liquid, edge collective modes arise. [20–
22] These “edge magnetoplasmons” have a linear low-
energy dispersion and are decoupled from the (gapped)
bulk modes. [22] Such modes are long-lived thanks to
the strong confinement at the edge and their quasi-one-
dimensionality. [23] Fetter [20] calculated their dispersion
in a two-dimensional electron gas (2DEG), even though
its analytical solution exploited an uncontrolled approx-
imation. Later he solved the same problem in the pres-
ence of nearby grounded metal plates by numerical meth-
ods. [24] Notably, edge magnetoplasmons can propagate
in both directions along the edge, i.e. they are not chi-
ral in a strict sense. However, chirality is still present
since the “wrong-direction” plasmon is gapped, and its
gap frequency increases with the magnetic field. [20]

In many systems, electrons experience pseudo-
magnetic fields, whose main characteristic is to preserve
the global time-reversal symmetry. This is the case, e.g.,
of strained graphene. [25–27] Strain, modifying hopping
parameters, enters the low-energy Hamiltonian as a vec-
tor potential A(r, t). The global time-reversal invariance
is assured by the fact thatA has opposite signs on the two
inequivalent valleys (K and K ′) of the Brillouin zone. In

spite of this, Landau quantization has been observed in
strained samples and the effective magnetic field has been
shown to reach values of hundreds of Tesla. [28]

Naively, when doping is sufficiently high and inter-
valley scattering is neglected, one would expect the elec-
trons of each valley to behave as a 2DEG subject to an
effective magnetic field [Fig. 1a)]. Each valley should ex-
hibit two edge plasmons, one of which gapped [Fig. 1b)],
with the direction of propagation of the acoustic plas-
mon determined by the sign of the pseudomagnetic field
in the given valley. Therefore, at low frequency one ex-
pects two counter-propagating edge magnetoplasmons to
emerge, each due to density oscillations of one of the
two electronic components. Unfortunately, the problem
is not so simple: even neglecting direct scattering be-
tween them, the two valleys are always electrostatically
coupled, and a density fluctuation in one of them will
invariably influence the electrons in the other. This fact
makes the problem completely non-trivial and, since one
of the two valleys is always off-resonance (i.e. it experi-
ences an effective magnetic field with the wrong sign), it
could in principle destroy the collective modes. We find
that the two counter-propagating acoustic edge plasmons
survive, but that the valleys are not completely disen-
tangled. Each collective mode stems indeed from the
superposition of density oscillations in both valleys, and
becomes “localized” in one of them only in the limit of
large pseudomagnetic fields. We stress again that high
field values are actually attainable in experiments.

In this letter we solve the edge-plasmon problem in a
two-component 2D electronic system subject to a pseu-
domagnetic field. We solve the full Wiener-Hopf prob-
lem [29] defined by constitutive equations and electro-
statics, and we provide a comparison with an approxi-
mate solution à la Fetter.

The model—For the sake of definiteness we consider
a strained graphene sheet which occupies the half plane
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FIG. 1. Panel a) a schematic view of the theoretical model:
the two electronic components experience opposite pseudo-
magnetic fields. Two counter-propagating plasmons appear
at the edge of the system, each of them mainly due to den-
sity oscillations in a specific valley. Panel b) the dispersion
of edge collective modes in units of the cyclotron frequency
ωc, as a function of the momentum q measured in units of
qc = (kF`

2)−1 [` =
√
c/(eB) is the magnetic length]. We set

the filling factor ν = 1 (vp ' 1.2vF). Each electronic com-
ponent, depending on the range of frequencies explored, can
support up to two charged collective modes, one of which lives
inside the gap of the particle-hole continuum (shaded region).

x < 0, z = 0. We assume that the edge does not affect the
low-energy physics of the system: electrons are described
by the massless Dirac Hamiltonian [11–13]

H0 = vF

∑
k,α,β

ψ̂†k,α(k +A) · σαβψ̂k,β , (1)

where ψ̂†k,α (ψ̂k,α) creates (destroys) a particle with mo-
mentum k and pseudospin α, vF is the Fermi veloc-
ity, Ax = ξβ(uxx − uyy)/a and Ay = −2ξβuxy/a are
the two components of the pseudomagnetic vector po-
tential generated by the strain tensor uij(r) [here β =
−∂ ln(t)/∂ ln(a) ' 2, a = 1.4 Å, ξ is a numerical con-
stant of order one]. [25–27] We assume the strain field to
be such that the pseudomagnetic field ∇ × A = ±Bẑ
is constant. The plus (minus) sign applies to electrons
in valley K (K ′). Even though the strain field must
have a trigonal symmetry to induce a constant B, [25–
27] we regard the edge as a straight line, assuming that
its curvature is small. We neglect intervalley scattering,
assume graphene to be in the Fermi-liquid regime, [22]
and describe the electronic transport by linearized hy-
drodynamic equations. [30–32] The electron densities in
the two valleys satisfy separate continuity equations, i.e.

∂tδnK + n0∇ · vK = 0 ,

∂tδnK′ + n0∇ · vK′ = 0 , (2)

where δnK (δnK′) is the non-equilibrium density fluc-
tuation in valley K (K ′), while n0 is its equilibrium
value. Hereafter we suppress space and time indices for
brevity. The electron velocities vK and vK′ obey the
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FIG. 2. Panel a) the sound velocity of the acoustic edge
pseudo-magnetoplasmon vp = ωp(q)/q in units of the Fermi
velocity, plotted as a function of the filling factor ν. The
dots represent the Wiener-Hopf result, while the dashed line
is the solution approximated á-la Fetter [see Eq. (14)]. We
cut-off the logarithmic divergence of vp by setting q̄ = 0.01.
Panel b) the degree of valley polarization of the right-moving
edge pseudo-magnetoplasmon, given by |δnK/n̄diff | = (vp +
s)/(2vp) and |δnK′/n̄diff | = (vp−s)/(2vp). Note that at large
magnetic field (ν = 1), 80% of the contribution to density
oscillations comes from electrons in valley K, and only 20%
from those living around the K′ point. For the left-moving
edge plasmon an analogous figure can be drawn with valleys
K and K′ interchanged.

Navier-Stokes equations [22, 33]

∂tvK + ωcẑ × vK +
s2

n0
∇δnK −

e

m
∇φ = 0 ,

∂tvK′ − ωcẑ × vK′ +
s2

n0
∇δnK′ −

e

m
∇φ = 0 , (3)

where m = ~kF/vF is the cyclotron mass (kF is the Fermi
momentum), ωc = eB/(mc) is the classical cyclotron fre-
quency, and s =

√
m−1∂P/∂n = vF/

√
2. [22] Finally,

the electrostatic potential is given by

φ(r) = e

∫
d2r′

δnK(r′) + δnK′(r
′)

|r − r′| . (4)

Since the translational invariance along the ŷ direction
is not broken, all functions have a dependence of the
form e−i(ωt−qy). Eqs. (2)-(4) constitute a system of
integro-differential equations that can be solved using
the Wiener-Hopf technique. [29] We calculate the sound
velocity of the two counter-propagating edge pseudo-
magnetoplasmons. Furthermore, we show that in the
limit B →∞ the two valleys decouple and each collective
mode is due to density oscillations of only one of them.
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Fetter [20] simplified the problem by introducing an
approximation of Eq. (4), replacing it with

∂2
xφ(x)− 2q2φ(x) = 4πe|q|

[
δnK(x) + δnK′(x)

]
. (5)

The big advantage of Eq. (5) is that, while leaving in-
tact the first two moments of the interaction potential
integrated across the edge, it allows to study a system
of ordinary linear differential equations. However, effects
that depend on the long range of the interaction along the
edge are in this way lost. Note indeed that the asymp-
totic behavior of Eq. (5) in the limit q → 0 is completely
different from that of the Fourier transform of Eq. (4).
Below, we compare our exact results with those obtained
with the approximation (5). We stress that the solution
obtained with the Wiener-Hopf method in not just an in-
cremental improvement of Fetter’s result, but reveals fea-
tures missing in the approximate result. Namely, (i) the
logarithmic divergence of the plasmon velocity at small
momenta due to the long-range nature of the Coulomb in-
teraction, [21] and (ii) the absence of gapped modes with
energy below ~ωc. Details of the calculation in the ap-
proximate model, which closely parallels Fetter’s deriva-
tion, [20] are given in the Supplemental Online Material.

The Wiener-Hopf solution— To solve the problem
posed by Eqs. (2)-(4), we first introduce nsum(diff)(x) ≡
δnK(x) ± δnK′(x). The resulting equation for ndiff(x)
is independent of φ(x), and its solution reads ndiff(x) =
n̄diffe

κ−x, where κ− =
√
q2 + s−2(ω2

c − ω2). n̄diff is a
constant to be determined from the boundary conditions.
Plugging this solution back into Eqs. (2)-(4), and taking
their one-sided Fourier transform, [29] we find

nsum(k) =

2en0

ms2
(k2 + q2)φ(k) +

[
ik +

q2

κ−

ω2
c

ω2

]
Ξ̄

k2 + κ2
−

,

(6a)

n̄diff =
q

κ−

ωc
ω

Ξ̄ . (6b)

Here we used the fact that vK,x(0) = vK′,x(0) = 0, and
we defined Ξ̄ ≡ nsum(0)− 2en0φ(0)/(ms2). We extend k
to the whole complex plane, denoting with the subscript
“+” [“−”] functions analytic in the upper [lower] half.
The functions nsum(k) and φ(k) in Eq. (6a) are, by con-
struction, analytic for =m(k) ≥ 0. [29] We therefore re-
name φ(k) → φ+(k) and nsum(k) → n+(k). Analyticity
requires the numerator of Eq. (6a) to vanish for k = iκ−:
we use this condition below to determine the plasmon
dispersion. Taking the double-sided Fourier transform of
Eq. (4), noting that the left-hand side is φ+(k) + φ−(k),
and combining it with Eq. (6a) we get

(k2+κ2
−)G(k)φ+(k)+(k2+κ2

−)φ−(k) = 2πeΞ̄F (k) . (7)

where G(k) ≡ 1 + 2α
√
k2 + q2/(k2 + κ2

−), F (k) =

−
[
ik+q2ω2

c/(κ−ω
2)
]
/
√
k2 + q2, and α = 2πe2n0/(ms

2).

Eq. (7) can be solved with the Wiener-Hopf technique.
Using a well-known theorem of complex analysis, [29] we
rewrite G(k) = G+(k)/G−(k), where (η → 0+)

G±(k) = exp

[∫ ∞∓iη
−∞∓iη

dz

2πi

lnG(z)

z − k

]
. (8)

The function G+(k) [G−(k)] is analytic in the upper
[lower] half of the complex plane. Eq. (7) then becomes

G+(k)φ+(k) +G−(k)φ−(k) = 2πeΞ̄F (k)
G−(k)

k2 + κ2
−
. (9)

The term on the right-hand side of Eq. (9) can be rewrit-
ten as F (k)G−(k)/(k2+κ2

−) = F+(k)+F−(k), [29] where
F+(k) [F−(k)] is analytic in the upper [lower] half of the
complex plane, and reads

F±(k) = ±
∫ ∞∓iη
−∞∓iη

dz

2πi

F (z)

z − k
G−(z)

z2 + κ2
−
. (10)

Eq. (9) now reads

G+(k)φ+(k)− 2πeF+(k)Ξ̄ = 2πeF−(k)Ξ̄−G−(k)φ−(k) .
(11)

Since the left-hand side is analytic for =m(k) ≥ 0 and the
right-hand side is analytic for =m(k) ≤ 0, together they
define a function analytic in the whole complex plane.
Moreover, both sides of Eq. (11) vanish in the limit |k| →
∞. Therefore [29] they must be separately equal to zero,
and φ+(k) = 2πeΞ̄F+(k)/G+(k). Eq. (6a) now reads

n+(k) =

[
2α(k2 + q2)

F+(k)

G+(k)
+ ik +

q2

κ−

ω2
c

ω2

]
Ξ̄

k2 + κ2
−
.

(12)
Since n+(k) is, by definition, analytic for =m(k) > 0, the
square brackets in Eq. (12) must vanish for k = iκ− in
order to cancel the pole in the denominator. Performing
the integrals (8) and (10), setting ωp(q) = vpq, and taking
the limit q → 0, from the square brackets in Eq. (12) we
get s2/v2

p − 1 = 2ᾱf/g, where

g = exp

[
2ᾱ

π

∫ ∞
0

dx
x2 + 1

(x2 − 1)2 + 4ᾱ2x2
ln

(
1 + x

2

)]
,

f =
1

π
P
∫ ∞
q̄

dy

y + 1

(
s2

v2
p

+ y

)
y−1

y2 − 1

× exp

[
− 2ᾱ

π

∫ ∞
0

dx

(x2 + 1) ln

(
y + x

y + 1

)
(x2 − 1)2 + 4ᾱ2x2

]
. (13)

Here q̄ ≡ sq/ωc and ᾱ ≡ sα/ωc =
√

2Nfαee(ν − 1/2),
where Nf is the number of residual fermion flavors,
αee = e2/(~vF) the dimensionless coupling constant,
and ν the filling factor In the presence of unscreened
electron-electron interactions the integral on the second
line is infrared divergent in the limit q̄ → 0. The edge
pseudo-magnetoplasmon velocity therefore diverges as



4

v2
p → −2s2ᾱ ln(ᾱq̄)/π (when ᾱ � 1). [34] From this we

extract the length scale λ ≡ ᾱs/ωc = 2πe2n0/(mω
2
c ),

which is the typical size of the boundary layer. [21] Solv-
ing the problem á-la Fetter, [35] by replacing Eq. (4) with
Eq. (5), we find

vp,approx = s

√
1 + 2

√
2

2πe2n0

msωc
. (14)

A comparison between vp and the approximate result of
Eq. (14) is given in Fig. 2a). In this plot we set q̄ = 0.01.

Since the problem is symmetric for q → −q, at any
given frequency two counter-propagating plasmons can
be excited. Once a plasmon is excited, the two electronic
components oscillate with opposite phases. [35] Therefore
|ndiff | > |nsum|. Hence, to display the degree of valley po-
larization we consider |δnK/ndiff | and |δnK′/ndiff |. For
weak pseudomagnetic fields the two are identical, and
both valleys oscillate simultaneously. However, in the
limit B →∞ one of the them is completely “frozen” and
oscillations involve only the other valley. In this case,
e.g., |δnK/ndiff | ' 1 and |δnK′/ndiff | ' 0. We derive
an explicit expression for these two quantities. First,
when ω = ωp(q), n̄diff = sΞ̄/vp [see Eq. (6b)]. The
value of nsum(x = 0) is obtained by taking the Fourier
transform of Eq. (12) in the limit x → 0−. [35] The re-
sulting expressions are fairly simple, but their numer-
ical evaluation turns out to be quite challenging. We
therefore resort to the approximate model, which gives
nsum(0) = s2Ξ̄/v2

p, in very good agreement with the re-
sult obtained by the Wiener-Hopf technique (when vp is
calculated with this method). Using the approximate ex-
pression, |δnK/ndiff | = (vp +s)/(2vp) and |δnK′/n̄diff | =
(vp − s)/(2vp). In Fig. 2b) we plot the two functions for
the right-propagating mode. At ν = 1 the 80% (20%) of
the contribution comes from electrons of valley K (K ′).

It is also possible to show that no other mode lives
inside the bulk-plasmon gap. Such a mode should have
a zero-momentum frequency smaller than ωc. The plas-
mon equation for gapped modes is obtained as before by
considering the term in the square brackets in Eq. (12)
and setting k = iκ− and ω = ωc∆, with 0 < ∆ < 1. In
the limit q → 0 the resulting equations are identical to
those obtained before, when these are evaluated in the
limit vp → ∞ and ᾱ = sα/(ωc

√
1−∆2). The plasmon

equation is therefore a function of only ᾱ, and has no
solution unless ᾱ → ∞ (i.e. for ∆ = 1). Therefore the
gapped mode has a minimum energy equal to ~ωc.

Finally, inter-valley scattering introduces a mecha-
nism of non-conservation of the valley density. Eqs. (2)
are therefore amended by adding the terms (δnK −
δnK′)/τI with opposite signs in the two equations. Ex-
tending the Wiener-Hopf calculation in the presence of
the inter-valley scattering we find that, in the limit of
τ−1
I � cq, the pseudo-magnetoplasmons dispersion be-

comes ωp(q) = vpq + i/(2τI). [35]

Conclusions—In this letter we have discussed the prob-
lem of collective modes confined at the boundaries of a
two-component 2D system subject to a pseudomagnetic
field which preserves the time-reversal symmetry. [25–
27, 36, 37] This property is ensured by the fact that it
has opposite signs for the two different electron popula-
tions. We have shown that (i) two counter-propagating
acoustic plasmons live at the edge of the system, and that
(ii) in the limit of large pseudomagnetic field the excited
plasmon involve only density oscillations of one of the
two electronic components, while the other is “frozen”.

In graphene, edge modes induced by shear strain defor-
mations [25–27] are valley-polarized. They can therefore
be used to selectively excite electrons in one of the two
valleys by, e.g., optical means, by carefully choosing the
energy and wavevector of the imparted external pertur-
bation. This fact, similar to the valley-selective circular
dichroism of transition metal dichalcogenides. [38], has a
direct impact on the emerging field of valleytronics. [38–
40] Furthermore, since the edge plasmon velocity depends
on the strain field, it is possible to draw an analogy with
the propagation of light in media with different refractive
indexes, and imagine to induce focusing, anti-focusing
and interference between collective modes by means of a
properly chosen strain pattern. [25–28]

Our edge pseudo-magnetoplasmons are conceptually
different from the edge “Berry plasmons” recently intro-
duced in Ref. 41. The latter are driven by a pseudo-
magnetic field in momentum space (Berry curvature)
whereas our valley-selective pseudo-magnetic field acts
in real space, therefore opening a gap in the spectrum
of the modes propagating in the “wrong” direction. No
such gap is present in the spectrum of Berry plasmons.

Being unidirectional as well as valley-polarized (in the
large-strain limit), edge plasmons are expected to be
long-lived excitations only weakly affected by smooth
charge inhomogeneities. Once launched by, e.g., an s-
SNOM setup [17, 18, 42] or fast electric pulses applied to
an electrode [23, 43], they can be detected in real-time
measurements far away from the injection point. [23, 43]
Furthermore, the combination of a real magnetic field
with strain creates an asymmetry in the velocity of the
two counter-propagating plasmons. The observed differ-
ence between plasmon velocities in opposite directions
can be compared with theoretical predictions to reveal
the valley-polarized nature of pseudo-magnetoplasmons.
Finally, edge pseudo-magnetoplasmons in graphene nan-
odisk arrays can be revealed in IR-THz optical absorption
measurements from the splitting of the low-energy peak
in the presence of both strain and magnetic field. [44]

A more exotic testing ground for these ideas is given
by electrons traveling in a skyrmion lattice. [36, 37] The
complex, topological magnetic structure of the skyrmions
is responsible for the emergence of an “effective elec-
trodynamics”, under which electrons experience a spin-
dependent pseudo-magnetic field similar to the one de-
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scribed in this paper, with the spin index replacing
the valley index. In this case, our theory predicts the
existence of counter-propagating spin-polarized acoustic
plasmons, which could be exploited for spintronics appli-
cations. [45–47] The anomalous Hall effect arising from
the net magnetic moment of the skyrmion is expected to
be a minor correction to the main effect.
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