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The mechanical resonance properties of a micro-electro-mechanical oscillator with a gap of 1.25 µm
was studied in superfluid 3He-B at various pressures. The oscillator was driven in the linear damping
regime where the damping coefficient is independent of the oscillator velocity. The quality factor
of the oscillator remains low (Q ≈ 80) down to 0.1 Tc, 4 orders of magnitude less than the intrinsic
quality factor measured in vacuum at 4 K. In addition to the Boltzmann temperature dependent
contribution to the damping, a damping proportional to temperature was found to dominate at low
temperatures. We propose a multiple scattering mechanism of the surface Andreev bound states to
be a possible cause for the anomalous damping.

Over several decades, different families of unconven-
tional superconductors have been discovered. Many
of these possess high transition temperatures, which
generates much interest from the community pursuing
room temperature superconductors. However, the com-
plete microscopic understanding of them still remains a
challenge1. Superfluid 3He with p-wave spin-triplet pair-
ing is a prime model system to study the unconventional
nature of Cooper pairs because the symmetry of the con-
densate is clearly identified and the properties of the
intrinsically pure bulk system are well understood to a
quantitative level2. The early theoretical works3,4 have
revealed the extreme fragility of Cooper pairs against any
type of impurity scattering in unconventional supercon-
ductors. Interfaces and surfaces also serve as effective
pair-breaking agents in these systems, which results in
many intriguing surface properties5,6. The surface scat-
tering in unconventional superfluids/superconductors in-
duces quasiparticle mid-gap bound states spatially local-
ized near the surface within the coherence length, ξ0,
often called surface Andreev bound states (SABS), ac-
companying selective suppression of the order param-
eter components7–10. The detailed structure of SABS
has been theoretically investigated for various boundary
conditions9,10.

In superconductors, tunneling spectroscopy has proven
to be a powerful tool for studying the pairing symmetry
and surface states11. However, the detection of SABS in
superfluid 3He has been difficult due to the lack of an
appropriate probe for the uncharged fluid. Nevertheless,
various works have suggested the existence of SABS12–20.
Measurements of transverse acoustic impedance using
quartz transducers have been used to investigate SABS12.
The measured transverse acoustic impedance agrees with
theoretical calculations, which provides indirect confir-
mation of SABS13,14. The high resolution heat capacity
measurement of 3He in a silver heat exchanger was able
to identify the contribution from the SABS near the sil-
ver surface15. In the recent experiment by the Lancaster
group16, they linked the absence of the critical velocity
of a wire moving without acceleration to the presence

FIG. 1. A schematic side-view of the MEMS device. A mobile
center plate is suspended above the bottom plate by springs
(not shown). The gap D between the mobile plate and the
bottom plate is 1.25 µm. The thickness of each layer is shown
to scale. The horizontal arrow represents the direction of the
oscillation of the shear mode.

of SABS. Recent theoretical studies provide a fresh in-
sight into the nature of SABS21,22. They suggest the
anisotropic magnetic response of the film or surface of
3He-B with specular boundaries as a direct indicator of
Majorana fermions in surface bound states.

Various resonators in direct contact with liquid 3He,
such as torsional oscillators23, vibrating wires24,25, tun-
ing forks26,27, and moving wires16, have been successfully
utilized to investigate the properties of its normal and su-
perfluid phases. A new direction in the development of
the mechanical probes is based on the nanolithography
technology, such as micro- and nano-electro-mechanical
system (MEMS and NEMS) devices28,29. We have devel-
oped MEMS devices to study superfluid 3He films30,31.
Theses devices have also been successfully exploited to
study the viscosity of normal liquid 3He below 800 mK32.
In this paper, we report the measurement of the damp-
ing of a MEMS device in superfluid 3He-B which exhibits
anomalous low temperature behavior. A plausible phys-
ical mechanism involving SABS is conjectured to be re-
sponsible for the observed behavior.

The MEMS device used in this measurement has a
mobile plate with 2 µm thickness and 200 µm lateral
size. The plate is suspended above the substrate by
four serpentine springs, maintaining a gap of 1.25 µm.
A schematic side-view of the device is shown in Fig. 1.
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When the device is submerged in the fluid, a film is
formed between the mobile plate and the substrate, while
the bulk fluid is in direct contact with the top surface
of the plate. Its in-plane oscillation, called the shear
mode, can be actuated and detected by the comb elec-
trodes fabricated on either side of the plate. The details
of the devices and the measurement scheme can be found
elsewhere28,33,34.

The MEMS device was studied in liquid 3He at pres-
sures of 9.2, 18.2, 25.2, and 28.6 bars and cooled down
to a base temperature of about 250 µK by a dilution re-
frigerator and a copper demagnetization stage. The res-
onance spectrum of the shear mode was obtained contin-
uously upon warming from the base temperature with a
typical warming rate of 30 µK/hr. The temperature was
determined by calibrated tuning fork thermometers26,27

below 0.6 mK and by a 3He melting curve thermometer
above. The PLTS-2000 was adopted as the temperature
scale35. The uncertainty of temperature measured by the
tuning forks is mainly from the calibration process and
is represented by error bars in Fig. 2. A magnetic field of
14 mT was applied in the direction perpendicular to the
plane of the film except for one of the 28.6 bar measure-
ments. The full width at half maximum (FWHM), γ,
and the resonance frequency, f0, were obtained by fitting
the spectrum to the Lorentzian:

x = A
γf0

√

(f2
0 − f2)2 + (γf)2

, (1)

where x is the vibration amplitude of the plate, A =
F0/4π

2mf0γ is the amplitude of the Lorentzian peak,
F0 is the amplitude of the driving force applied on the
plate, m is the effective mass of the plate, and f is the fre-
quency of the driving force. The FWHM is proportional
to the damping coefficient in the equation of motion of
a damped driven harmonic oscillator. The uncertainty
from fitting is represented by error bars in Fig. 2. The
resonance feature of the MEMS device is sensitive to the
temperature36. For instance, at 28.6 bar its quality factor
reaches around 80 when the liquid is cooled to 300 µK,
and decreases rapidly to order of unity near the A-B tran-
sition.

The mean free path, ℓ, of the 3He quasiparticles is of
the order of 10 µm at the transition temperature and in-
creases exponentially when the temperature approaches
zero due to the isotropic energy gap of 3He-B2. For
T <
∼

0.4Tc, ℓ becomes larger than any length scale of the
MEMS devices, and the MEMS-superfluid system tran-
sitions into the ballistic regime. This aspect is verified
by the temperature independent resonance frequency ob-
served in this temperature range. At low velocities, the
damping has a temperature dependence solely from the
density of the quasiparticles which decreases rapidly with
temperature as exp(−∆/k

B
T )25. Below 0.4Tc, the en-

ergy gap ∆ develops fully to the zero-temperature value,
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FIG. 2. (Color online) The FWHM of the MEMS as a func-
tion of the reduced temperature at various pressures in a log-
log scale. For clarity, the error bars are only shown for the
data of 9.2 and 18.2 bar. The straight line corresponds to
a linear temperature dependence. (Inset) The same data in
an Arrhenius scale. A straight line in this scale represents a
Boltzmann dependence.

∆0. The FWHM of the MEMS is expected to follow

γ = B exp(−∆0/kB
T ), (2)

where B is the damping amplitude determined by the
geometry of the device and the properties of the fluid.
The intrinsic FWHM measured in vacuum at 4 K,

which is 0.071 Hz, is subtracted from the fitted FWHM
to yield the FWHM due to the fluid only. This FWHM is
plotted as a function of the reduced temperature at vari-
ous pressures in Fig. 2. At the lowest attainable temper-
ature for 28.6 bar, 280 µK, the FWHM is around 270 Hz,
which is 4 orders of magnitude larger than the intrinsic
FWHM and 2 orders of magnitude larger than the TF
FWHM in the same condition37. In contrast, the FWHM
of MEMS in superfluid 4He below 200 mK is weakly tem-
perature dependent and approaches the intrinsic value38.
Therefore, the anomalously large damping observed in
3He-B is believed to stem from some mechanism other
than the scattering of thermal quasiparticles from the
bulk. As shown in the inset of Fig. 2, the FWHM does
not follow Eqn. (2). Furthermore, the FWHM becomes
linear in temperature below ∼ 0.15Tc for the three high-
est pressures. For 9.2 bar, the linear dependence is not
fully developed, probably because of the relatively low
Tc at this pressure. This linear temperature dependent
term emerging at low temperatures keeps the FWHM of
the MEMS from decreasing exponentially as expected.
The coefficient of the linear temperature dependent con-
tribution can be extracted from the ratio of FWHM to
temperature in the low temperature limit39.
The acquired linear term is then subtracted from the

total FWHM. The residual FWHM is plotted against the
temperature in an Arrhenius scale in Fig. 3. The linear
behavior of the three highest pressures demonstrates a
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FIG. 3. (Color online) The FWHM of the Boltzmann damp-
ing, γ

B
, against the reduced temperature for various pressures

in an Arrhenius scale. A linear fit (straight lines) in this scale
gives the measured energy gap, ∆m.

Boltzmann exponential temperature dependence follow-
ing Eqn. (2) and justifies the assumption that the damp-
ing in addition to the expected thermal quasiparticles in
the bulk is linear. Since its temperature dependence is
not fully developed at low temperatures for 9.2 bar, the
linear term is estimated by requiring the residual FWHM
to obey Eqn. (2). It was found that the residual FWHM
data are sensitive to the choice of the linear coefficient.
A 5% variation in the value is sufficient to skew the de-
pendence of the residual FWHM. Therefore, the total
FWHM can be expressed by

γ = γ
A
+ γ

B
= αT +B exp(−∆0/kB

T ), (3)

where γ
A
is the linear temperature dependent term that

dominates at low temperatures, and γ
B
is the Boltzmann

exponential temperature dependent term due to the ther-
mal quasiparticles in the bulk region. Hereafter, the ex-
ponential term is called the Boltzmann damping and the
linear term the additional damping.
The coefficient of the additional damping, α, decreases

by a factor of two as the pressure increases from 9.2 bar
to 28.6 bar (Fig. 4). The linear coefficient seems to have
a linear dependence on the coherence length. For the
Boltzmann damping, the data in Fig. 3 can be fitted to
straight lines according to Eqn. (2) to get ∆m, the mea-
sured energy gap. It was found that ∆m is much less than
the known bulk value at the corresponding pressure. The
pressure dependence of ∆m is presented in terms of the
BCS coherence length ξ0 = h̄vF /π∆0, where v

F
is the

Fermi velocity (Fig. 4). The measured energy gap is sup-
pressed from the bulk value and shows a strong pressure
dependence. It decreases monotonically with the scaled
film thickness, D/ξ0, since a larger effective thickness
gives more space for the order parameter to recover to its
bulk value, hence a larger overall energy gap for the film.
Also shown in the plot is a calculation which evaluates
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FIG. 4. (Top) The coefficient of the linear temperature term,
α, against the coherence length of the bulk superfluid. (Bot-
tom) The measured energy gap, ∆m, against the scaled film
thickness, D/ξ0. The error bars associated with ∆m are from
the linear fitting in Fig. 3. Also plotted are the bulk en-
ergy gap and the average energy gap in a film calculated by
Vorontsov. The bulk gap used here is from the weak coupling
plus model40.

the energy gap by averaging the parallel and perpendic-
ular components of the order parameter for a superfluid
film with both boundaries diffusive41. Our measurement
shows a much stronger suppression and pressure depen-
dence of the energy gap than the theoretical estimation.

One might argue the local heating from the MEMS de-
vice is responsible for the additional damping. However,
the film formed in our MEMS device is in good thermal
contact with the surrounding bulk because of the open
geometry. Furthermore, the temperature rise due to the
heat dissipation is negligible. For instance, at 0.2Tc and
9.2 bar, when the center plate is oscillating at a veloc-
ity of 1.4 mm/s, the damping force on the plate is about
2 nN, which results in a dissipation power of about 3 pW.
In addition, all the measurements were performed in the
linear regime where the damping coefficient was indepen-
dent of the excitation42. Any heating effect would have
resulted in the increase of the FWHM at higher excita-
tions.

It is also unlikely that the additional damping comes
from the vortices around the MEMS devices or other
topological objects as suggested by Winkelmann et al.43,
because multiple independent cooldowns produced con-
sistent spectra at a given temperature and pressure. Dur-
ing each thermal cycle the MEMS device was driven at
high velocities beyond the linear regime where heating
effect was clearly observed. The severe heating and the
high velocity should have altered vortex lines or other
topological objects around the device. But after a rea-
sonable relaxation time, the spectrum always recovers to
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the shape right before the heating.

However, it is possible that the mobile plate dissipates
through the surface bound states in the vicinity of the
plate, leading to the additional damping. The atomic
force microscopy study of the MEMS surfaces shows that
the average height variation of the polysilicon surface is
≈ 10 nm, while their lateral size is ≈ 150 nm28. Since
these length scales are much larger than the Fermi wave-
length of the 3He quasiparticles, the surface of the plate
is diffusive. The density of states, D(E), for the surface
bound states is almost independent of energy for a diffu-
sive boundary9 (Fig. 5). It is reasonable to project that
the number of quasiparticles excited in the bound states
should be proportional to temperature. Therefore, the
scattering of the quasiparticles off the moving plate could
lead to a linear temperature dependence of the damping,
if the transverse momentum transfer occurs.

The perpendicular component of the order parameter
is completely suppressed at either specular or diffusive
boundary9. One can expect that quasiparticles will be
generated with an infinitesimally small amount of energy
in the surface bound states, which are confined by the gap
potential around the boundary within a distance char-
acterized by the coherence length ξ0 (Fig. 5). Parallel
to the plane of the plate with a specular boundary, the
bound quasiparticles move with a slow velocity v‖ ≈ v

L
,

where v
L
is the Landau critical velocity. In the direction

perpendicular to the plane, however, the quasiparticle
moves with a fast velocity v⊥ ≈ v

F
, since the energy gap

is closed in this direction. The Fermi velocity of the su-
perfluid varies from 60 to 35 m/s as the pressure changes
from 0 to 30 bar, while the coherence length changes from
90 to 18 nm in the pressure range. Therefore it takes ap-
proximately 1 ns for a quasiparticle to travel from the
surface of the plate to the edge of the potential well,
where it is then retroreflected due to the Andreev scat-
tering. The quasiparticle becomes a quasihole and follows
its previous path, moving towards the plate. It is scat-
tered normally off the plate and Andreev scattered off
the gap potential again before returning to its original
position (Fig. 5). This completes an entire loop involving
the normal and Andreev scattering. Considering the res-
onance frequency of the MEMS device (≈ 20 kHz), one
estimates that about 104 such scatterings occur within
one cycle of the oscillation. However, for the normal
scattering at the specular boundary, there is no momen-
tum transfer in the parallel direction between the plate
and the quasiparticles, hence no damping for the shear
motion of the plate. Therefore, one expects a very small
damping force for the specular boundary. This may be
verified by coating the MEMS plate with a couple of lay-
ers of 4He atoms, since the 4He atoms drastically alter
the boundary conditions44,45.

For a diffusive boundary, it is difficult to trace the tra-
jectory of a particular quasiparticle, though the process
of the multiple Andreev scattering is still valid. Those

FIG. 5. (A) A schematic picture showing the surface den-
sity of states of superfluid 3He at a diffusive boundary9. The
quasiparticles excited in the mid-gap band are promoted by
the MEMS up to the edge, ∆∗. (B) The SABS confined by
a potential well near the boundary at z = 0. (C) A complete
scattering cycle of a quasiparticle at a specular boundary in-
volving two normal scatterings and two Andreev scatterings.

having an anti-parallel group velocity component with re-
spect to the plate velocity vp will have a higher chance of
scattering, resulting in a net flux proportional to vp. The
tiny difference between the momentum of quasiparticles
and quasiholes around the Fermi momentum accumulates
due to the high number of scattering during one cycle of
the plate motion. This multiple scattering process leads
to a net momentum transfer between the plate and the
bound states which are then promoted to higher energy
states until the mid-gap edge ∆∗ is reached9,14. We pro-
pose that this process could be the underlying mechanism
for the large and linear temperature dependent damping.
Furthermore, our measurements in the nonlinear regime,
which will be reported elsewhere, can be coherently un-
derstood with this mechanism. Nonetheless, this model
neither requires the presence of a film nor involves sur-
face bound states on the other side of the film. Currently,
we do not understand the influence of another surface in
close proximity on the damping of the plate. To clarify
this, we have designed MEMS devices with the substrate
etched away so that both sides of the plate are exposed
to bulk fluid.

In conclusion, a superfluid 3He film with a thickness
of 1.25 µm was studied by a MEMS device at various
pressures. At low temperatures, an anomalously large
damping on the MEMS was measured in addition to the
ordinary Boltzmann damping. It was attributed to a
multiple scattering picture of the interaction between the
MEMS devices and the surface bound states on the film.
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R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer,

W. Schoepe, L. Skrbek, P. Skyba, R. E. Solntsev, and
D. E. Zmeev, J. Low Temp. Phys. 146, 537 (2007).

[27] D. I. Bradley, P. Crookston, S. N. Fisher, A. Ganshin,
A. M. Guénault, R. P. Haley, M. J. Jackson, G. R. Pick-
ett, R. Schanen, and V. Tsepelin, J. Low Temp. Phys.
157, 476 (2009).
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