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The phases and properties of matter under global rotation have attracted much interest recently.
In this paper we investigate the pairing phenomena in a system of fermions under the presence
of rotation. We find that there is a generic suppression effect on pairing states with zero angular
momentum. We demonstrate this effect with the chiral condensation and the color superconductivity
in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase
diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.

Introduction.—The phases and properties of matter
can become highly nontrivial under rotation, and have
attracted a lot of interest recently. Such studies bear
particular relevance for the strongly interacting matter
of Quantum Chromodynamics (QCD). For example, as-
trophysical objects like neutron stars, made of dense
QCD matter, can be rapidly spinning [1, 2]. In rela-
tivistic heavy ion collision experiments, the typical colli-
sion events are off-central and the created QCD matter
will carry a nonzero angular momentum on the order
of 10* ~ 10°h with local angular velocity in the range
0.01 ~ 0.1GeV [3-8]. There has also been impressive
progress to study the rotating QCD matter using lattice
gauge theory simulations [9)].

In rotating matter, many interesting transport phe-
nomena could occur. For example, fluid rotation can
induce anomalous transport processes in a system of chi-
ral fermions, such as the chiral vortical effect [10-12] and
chiral vortical wave [13]. These can lead to measurable
experimental signals (see e.g. reviews in [14, 15]). In such
anomalous transport, it is found that the fluid rotation
plays a very analogous role to a magnetic field. Indeed
there appears to be interesting similarity between the chi-
ral vortical effect and the chiral magnetic effect [10, 16],
as well as between the chiral vortical wave and the chiral
magnetic wave [17, 18].

Apart from transport properties, it is of significant in-
terest to explore the effects of rotation on the phase tran-
sitions of matter in both relativistic and non-relativistic
cases. It is well known that a magnetic field can bring
interesting effects on the thermodynamics and phase di-
agram of e.g. QCD matter [19-24], such as the magnetic
catalysis and inverse catalysis (see reviews in [25, 26]) on
the chiral condensation. Given the close analogy between
rotation and magnetic field, it is tempting to ask how the
rotation could influence phase transitions. In this pa-
per, we investigate the pairing phenomena in a system of
fermions under rotation. We find a generic suppression
effect on pairing states with zero angular momentum,
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which will be demonstrated with the concrete examples
of chiral condensation and color superconductivity in hot
dense QCD matter.

Rotational Suppression Effect on Scalar Pairing
States.— Let us first explain, in an intuitive way, the
generic rotational suppression effect on scalar pairing
states. We consider a general system of spin—% fermions.
They could be e.g. the dense quark or nucleon matter in
compact stars [27-29] or cold atomic gases [30-32], or the
electrons/holes in solid state systems, or liquid helium-
3, etc. The pairing phenomenon between fermions under
suitable conditions encompasses a wide range of systems.
Examples include e.g. electron-electron pairing in super-
conductors, atom-atom pairing in helium-3 or cold fermi
gases, nucleon-nucleon pairing in large nuclei or dense nu-
clear matter, quark-anti-quark pairing in the chiral con-
densate of QCD, or quark-quark pairing in color super-
conductivity, etc. We focus on the scalar pairing states,
i.e. states with zero total angular momentum. For a pair
of spin-% fermions, there are different ways of forming
a spin-0 pairing state: either, the pair could have both
nonzero orbital angular momentum L and nonzero total
spin S, with L and S being opposite thus resulting in
total J = 0; or the pair could have zero orbital angular
momentum, and have opposite individual spin configura-
tions for the two fermions.

As we will show below, for such a system under rota-
tion, there is a generic rotational suppression effect on
the scalar pairing states. Intuitively this can be under-
stood as follows. The global rotation, implying a nonzero
macroscopic angular momentum of the whole system,
will induce a rotational polarization effect which tends to
“force” all microscopic angular momentum to be aligned
with the global angular momentum. So for a pair of
fermions, their relative orbital angular momentum L as
well as their individual spins would prefer to be parallel
to the global angular momentum rather than to arrange
themselves into a scalar state with zero angular momen-
tum. This therefore leads to a generic suppression effect
on the scalar pairing states. It also implies that pairing
states with nonzero angular momentum could become fa-
vorable. In the following, we quantitatively demonstrate
this effect with two nontrivial examples in the QCD mat-



ter: the chiral condensate (of quark-anti-quark pairing
states with L = S =1 but J = 0) and the diquark con-
densate (of quark-quark pairing state with L = S = 0).
Description in Rotating Frame.— Let us consider a
system of spinor particles under slow rotation with a
constant angular velocity & along a certain fixed axis.
This system can be equivalently described as a system
at rest in a rotating reference frame, see e.g. discus-
sions in [9, 30]. We denote space-time as (¢, Z) with flat
Minkowski metric n,, = Diag(1,—1,—1,—1). The local
velocity of this rotating frame (with respect to the non-
rotating frame) is given by @ = & x #. The space-time
metric of the rotating frame thus becomes a curved one:

1— 172 —vV1 —U2 —Us
v —1 0 0
—U2 0 -1 O (1)
—v3 0 0 -1

Juv =

In such description, the free Dirac Lagrangian for spinor
gets modified to be:

L= [i7"(8, +Ty) —m] (2)

where m is the fermion mass. The ¥* = e /*+®* with e
the tetrads for spinors and v* the usual Dirac ~y matrlces
The spinor connection is given by I'yy = + X [y*,7*] Tapp
where Uupy = Nac(€, G, 6,7 — €, 0pe%,) and G, is the
affine connection determined by ¢g*”. For the tetrads we
choose e, = 6%, +5‘160 v; and e = §* —6,06," v;.
We next con51der the hmlt of slow rotation, i.e. with w
small compared with 1/R where R is the system’s trans-
verse size [9, 30], and expand the Lagrangian up to the
order of O(w) After some lengthy but straightforward
calculations, one arrives at the following result:

L=yt [i0y+i7°5 - T+ (@ x &) - (=i0) +@ - Sxa| ¥ (3)

where S4><4 = % g g
Pauli matrices. The last two terms in the above bracket
may be interpreted as effective polarization term & - J,
with total angular momentum J consisting of an orbital
term and a spin term. The rotational velocity & serves as
an effective “chemical potential” for angular momentum.

The next step is to find the “natural” eigenstates in
this rotating frame, in parallel to the plane-wave spinor
eigenstates in normal frame [33-35]. The corresponding
Hamiltonian in momentum space reads:

9 > is the spin operator with & the

H =1 F+m) =& (& x 5+ Sixa) = Hy— - J (4)
We use the cylindrical spatial coordinates (r,0,z) with
W = wz and with r, # being transverse radial position and
azimuthal angle. The complete set of commutatmg oper-
ators consists of H, p., p2, J., and hy = 7735, - Syx4[36].
The last one is a sort of reduced helicity operator on

transverse plane. Omne can therefore label the eigen-
states of Hamiltonian by a set of corresponding eigen-
values: energy F, z-momentum k,, transverse momen-
tum magnitude k;, z-angular-momentum quantum num-
ber n = 0,+£1,..., and “transverse helicity” s = . The
four solutions of spinor eigenstates are given by:
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where Ey = \/k2 + k? + m? and J,(z) are n-th Bessel

functions of the first kind. The energy eigenvalues are
E = £E; — (n + 1/2)w with the plus (minus) for
u (v) spinor states respectively. The last term, i.e.
—(n 4+ 1/2)w, is the “rotational polarization energy”.
These results are the counterpart in rotating frame of
the usual plane wave spinor states in non-rotating frame.
With these states as basis one can then compute various
quantities of interest using the standard method.

Finally we introduce an effective interaction that takes
the generic form of four-fermion contact vertex:

‘Cfeff = G(TZW)Q + Gd(inc’st)(inC’st*) (7)

The first term is a fermion-anti-fermion scalar-channel
coupling while the second term is a di-fermion scalar-
channel coupling, with G and G4 the corresponding cou-
pling constants. The above relativistic form of effective
interaction is the Nambu-Jona-Lasinio (NJL) model. Tt
shall be emphasized that essentially the same physics is
applicable to many other fermion systems (such as pair-
ing in cold fermionic gases and conventional supercon-
ductor, etc). For specific application to chiral conden-
sation and color superconductivity in QCD matter, the
pertinent color/flavor indices and structures can be easily
added to the above interaction (see e.g. [37]).

Chiral Condensation in Rotating Matter.— We first
consider the chiral condensation which is a fermion-anti-
fermion pairing phenomenon. For this pairing state, the
spatial angular momentum (for the relative orbital mo-
tion) L = 1 while the spin S = 1, with total angular
momentum J = 0 for the pair. Following standard mean-
field method, one introduces the expectation value <1M)>
that leads to a mean-field mass gap M = m — 2G <z/3w>
Note that due to rotation, the system is no longer homo-
geneous and the M as well as <@M1> become dependent
on r by virtue of symmetry. Using mean-field propagator



one can obtain the grand potential as:

_ [ pef (M —m)*  NyN. / 2/
Q= /dr{ e = Zn: dk? [ dk.
< [Julker)? + T (ker)?]

xT |:]n (1 + e(en—u)/T) +In (1 + e—(en—u)/T)

+1n (1 + e(fnﬂ‘)/T) +1n (1 + e—(enﬂb)/T) } } (8)

In the above the mean-field quasiparticle dispersion ¢, is
given by €, = \/k2 + k7 + M2 — (n + 3)w. The mean-
field chiral condensate (or equivalently the mass gap M)
at given values of temperature 7', chemical potential u
and rotation w, can then be determined from the usual
gap equation: 61\547%) = 0and 51\542% > 0. We will numer-
ically solve the gap equation for the case of Ny =2 and
N, = 3 and present the results below. For the parame-
ters G, G4 and a cutoff scale A of this model, we choose
the standard values: G = 4.93GeV ™2, Gy = (3/4)G,
m = 0.006GeVand A = 0.65GeV (see e.g. [37]).
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FIG. 1: The dependence of mean-field mass gap M on radial
coordinate rw for several fixed values of w and T'.

Let us focus on the zero density case (i.e. = 0) and
study how the mass gap changes with various parameters.
For the transverse radial coordinate r, we have found that
the mass gap M smoothly decreases with r, see Fig. 1.
This dependence could be understood as follows: the or-
bital angular momentum for the same k; scale becomes
larger at larger 7 thus experiencing more suppression ef-
fect. we next show results for a particular value of r for
simplicity. In Fig. 2 we show M (at r = 0.1GeV~1) as a
function of w for several value of T'. At all temperature,
M decreases with increasing w: this clearly confirms the
rotational suppression effect on the chiral condensate. At
low temperature the chiral condensate experiences a first-
order transition when w exceeds a critical value w,, while

at high temperature the chiral condensate vanishes with
increasing w via a smooth crossover. The w,. decreases
with increasing temperature. From Fig. 2 one could also
infer the dependence of M on T. At small w, the mass
gap decreases smoothly toward zero with increasing T,
indicating a crossover transition. At large w the transi-
tion becomes stronger and eventually a first-order tran-
sition. The transition temperature 7. becomes smaller
at larger w. These results could be understood by con-
sidering w as a sort of “chemical potential” for angular
momentum. Indeed this is evident from Eq.(4): the term

@G- Jis in direct analogy to a term y - Q for a conserved
charge ). Therefore the phase transition behavior at
finite w is similar to that at finite p in the same model.
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FIG. 2: The mean-field mass gap M (at radial coordinate
r = 0.1GeV ™) versus w for various fixed values of T'.

With the above observation, it is tempting to envision
a new phase diagram of the chiral phase transition on the
T — w parameter space: see Fig. 3. It features a chiral-
symmetry-broken phase at low temperature and slow ro-
tation while a chiral-symmetry-restored phase at high
temperature and/or rapid rotation. A smooth crossover
transition region at high 7" and low w and a first-order
transition line at low 7" and high w are connected by a
new critical end point. Given the present model param-
eters, this critical point is located at Tcgp = 0.020GeV
and wogpp = 0.644GeV. As the “rotational suppression”
of scalar condensate is a quite generic effect, similar phase
transition behaviors under rotation should also occur in
other models for chiral condensate.

Superconducting Pairing in Rotating Matter.— To
demonstrate that the “rotational suppression” is a
generic effect, we also study another quite different type
of scalar pairing: the fermion-fermion superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [38] for a recent
review). Different from the chiral condensate, the di-
quark pairing state has orbital angular momentum L = 0
while total spin S = 0 (i.e. antisymmetric combination
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FIG. 3: The phase diagram on T-w plane (see text).

of individual quark spins), again with the total angu-
lar momentum J = 0. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate

Ae"‘ﬁ?’eij = —2Gy <i1/);?‘0757,/1f> the grand potential is
given by (with Ny =2 and N, = 3):

0 = /d3* AQ—IZ/de/dk
I CTe A 0]
X [In(ker)? + T (ker)?)

xNyT {(Nc -2) (ln (1 + eei/T) +In (1 + eiﬁi/T)
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+2 (1n (1 + eff”T) +In (1 + e*ﬁ”T)
+In (1 + eff*/T) +In (1 + e—eﬁ/T))] } (9)

In the above the mean-field quasiparticle dispersion €
and 5% is given by e = (\/k2 + kZ + m2£p)— (n+1)w
and €A% = [(\/k2 + k7 + m2 £ p)? + A?]7 — (n+ .
The diquark condensate A at given values of T, i and
w, can then be determined from the gap equation for the
order parameter: 62—%) =0 and 522(7%2 > 0. By numer-
ically solving the equation, we show in Fig. 4 the A (at
r = 0.1GeV~1) as a function of w for several values of
T and fixed p = 400MeV. With increasing w, the di-
quark condensate always decreases toward zero, through
a lst-order transition at low 7" while a smooth crossover
at higher T'. This result again confirms the generic rota-
tional suppression effect on the scalar diquark pairing.
Summary and Discussions.— In summary, we have
found a generic rotational suppression effect on the
fermion pairing state with zero angular momentum. This
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FIG. 4: The mean-field diquark condensate A (at radial co-
ordinate 7 = 0.1GeV ™) as a function of w for several values
of T and fixed value of p = 400MeV.

effect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while different in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T'— w parameter space.

Apart from significant theoretical interests, it is tempt-
ing to discuss potential implications of the rotational sup-
pression effect for several physics systems. The phase
diagram of QCD matter on T' — w plane could be quan-
titatively explored by ab initio lattice simulations which
has recently become feasible [9]. In heavy ion collisions
there is sizable global angular momentum (~ 10°A) car-
ried by the fireball (see e.g. [6]) with w reaching the
order of 0.1GeV, which may possibly help restore chiral
symmetry at lower temperature. For the dense matter
in neutron stars, the global rotation has a frequency up
to w ~ 10357 with wr ~ 0.1c (where c is speed of light)
at outer crust which might influence the nucleon mass or
nucleon-nucleon pairings as well as the moment of inertia
for such stars [28, 29]. To see whether any measurable
consequence in these QCD systems may result therein,
requires quantitative studies. In the non-relativistic do-
main, the cold fermionic gas is an ideal place to study the
rotational suppression effect on the fermion pairing and
the BCS-BEC crossover phenomenon [39-43]. A realistic
investigation of potential phenomenological applications,
as well as a very detailed discussion of the present theo-
retical study, will be reported elsewhere in the future.
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