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We demonstrate that interactions can substantially undermine the free-particle description of
magnons in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated
by the Dzyaloshinsky-Moria interaction, and a highly-degenerate two-magnon continuum yield a
strong, non-perturbative damping of the high-energy magnon modes. We provide a detailed account
of the effect for the S=1/2 ferromagnet on the kagomé lattice and propose further experiments.
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Theoretical proposals and experimental discoveries of
electronic topological materials having bulk bands with
nonzero topological invariants and protected edge states
[1, 2] have lead to an active search for similar effects in
systems with different quasiparticles [3-5]. Among the
latter are magnon excitations in ferromagnets on frus-
trated lattices, with several materials identified, synthe-
sized, and studied since the original proposal [5-9].

Simple Heisenberg ferromagnets have a classical, fully
polarized ground state and their excitation spectra are
affected by quantum effects only at a finite temperature
[10], regardless of the underlying lattice. However, the
lower symmetries of the geometrically-frustrated lattices,
such as kagomé and pyrochlore, allow for a rather sig-
nificant Dzyaloshinskii-Moriya (DM) interaction [8, 9].
While in their simplest form, the DM terms are frus-
trated, leaving the fully saturated ferromagnetic ground
state intact, such a protection does not hold for the ex-
cited states. Instead, the DM interaction generates com-
plex hopping amplitudes for the spin flips that translate
into fluxes of fictitious fields, see Fig. 1(a), leading to
Berry curvature of magnon bands. Among the conse-
quences of this band transformation are unusual trans-
port phenomena such as magnon Hall and spin Nernst
effects [5-7, 11-14].

On closer inspection, the sought-after nontrivial topo-
logical character of magnon bands is intimately tied to
several aspects of the underlying structures. In par-
ticular, their non-Bravias lattices necessarily host opti-
cal magnon branches, while the geometrically-frustrating
lattice topology favors underconstrained couplings that
result in the “flat” excitation branches featuring de-
generacy points with the dispersive magnon bands, see
Fig. 1(b). This degeneracy is lifted by the DM inter-
action, giving rise to the Berry curvature of the bands,
which is responsible for nontrivial transport properties.

It has also been suggested that, in a minimal model,
the topology of the bands can be “tuned” by manipulat-
ing the direction of magnetization [9, 14]. Using a small
field to change the mutual orientation of magnetization
M and DM vector D from M || D to M L D, one for-
mally turns the DM-induced complex hoppings and the
concomitant topological effects from “on” to “oft” [9].

We point out that in all these constructions, an ideal-
ized, non-interacting free-boson description of magnons
is simply taken for granted [11, 12, 15]. Below we demon-
strate that such a free-quasiparticle picture of magnons
in ferromagnets on the geometrically-frustrated lattices
is missing a crucial physical effect, which, in turn, chal-
lenges conclusions reached within the idealized picture.

The key idea is that, for M | D, the DM interaction is
also a source of the anharmonic, particle-non-conserving
coupling of magnons. The coupling is hidden for the
ground state, but not for excitations, similarly to the
complex hopping effect. Its most important outcome is a
significant, non-perturbative damping of the flat and dis-
persive optical modes in the proximity of their degener-
acy point, the effect precipitated by the divergent density
of states in the two-magnon continuum. The resultant
broadening at k— 0 is proportional to the first power of
the DM term, I'  |D|, same as the band-splitting effect
for M || D. Interestingly, a sizable broadening has been
noted as an unexpected result in a recent study of the
kagomé-lattice ferromagnet, Cu(1-3,bdc), see Ref. [9].

Model and magnon interaction.—The nearest-neighbor
model of a ferromagnet with the DM term is

H=—J) 8i-S;j+ Y Di-(SixS,), (1)
(ig) (ig)

where J > 0, (ij) runs over bonds of the kagomé lattice,
and Fig. 1(a) shows the order of ¢ and j in the DM term,
see [16]. While the DM interaction in the kagomé lat-
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FIG. 1: (a) A ground state of (1) with D;; = Dz; arrows on
bonds show ordering of S; and S; in the DM term with fic-
titious fluxes indicated. (b) Magnon bands along the KI'MK
path for D=0 (solid) and for D/J=0.3 with M || D (dashed).
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tice can have both in- and out-of-plane components, the
latter is dominant [17, 18]. In the following, we consider
Hamiltonian (1) with D;; =Dz as a minimal model that
illustrates a dramatic effect of magnon interactions.

Usually, the out-of-plane DM coupling would favor a
canted in-plane order of spins with reduced magnetic mo-
ment due to quantum fluctuations in the ground state
[19]. However, for ferromagnets on the geometrically-
frustrated lattices it is the DM term that is frustrated.
Thus, counterintuitively, magnetization remains fully
saturated, |[M|= SN, regardless of its orientation with re-
spect to D. This is because the mean-field tug of the DM
interactions on a given spin from its neighbors vanishes
identically due to its cancellation from different bonds,
see Fig. 1(a). For the same reason, the DM term cannot
generate fluctuations in the saturated ground state. One
can immediately see that the same is not true for magnon
excitations, because spin flips violate cancellation of the
DM contributions from different bonds. Therefore, while
the ground state is insensitive to the DM interaction, the
spectrum is not.

For the uniform out-of-plane D, there are two principal
directions for magnetization: M ||D and M L D. The for-
mer case has been throughly examined within the linear
spin-wave theory (LSWT) [5-9, 11-14] and we summa-
rize it here briefly. Choosing the spin-quantization axis
z||M || D one can straightforwardly rewrite (1) as

H=—-J) S - % Y (TSES; +T787S)), (2)

(i) (i)
where J =J—iD and the DM term provides imaginary
component to the spin-flip hoppings. Taking into account
lattice geometry, rewriting spin flips as bosons, and diag-
onalizing the corresponding 3 x 3 matrix for the kagomé
unit cell yields the harmonic-order, LSWT Hamiltonian

HE =3 coabl iy (3)
v,k

where the three magnon branches, €, x, are depicted in
Fig. 1(b) for a representative value of D, see [16] for de-
tails. The main outcomes of the DM term are the gaps
at the degeneracy points of the DM-free model, A x|D|,
and the Berry curvature of the bands due to fictitious
fields generated by complex hoppings [5, 12, 13]. It is
clear that this procedure can be generalized to an ar-
bitrary angle 6 between M and D by simply replacing
D — Dcosf in J above. This immediately implies that
for M L D the complex hoppings cease completely and
magnon bands should become free of the DM interaction,
i.e., equivalent to the D=0 picture in Fig. 1(b).

A flaw in this reasoning is in the harmonic approxima-
tion. Although for M L D the DM interaction does not
contribute to the LSWT, it does not disappear. For the
quantization axis z || M LD, the DM term becomes

» D — z z —
Ao = 5 (57 +50) 57551 +5). @
ij

which indeed does not affect the ground state or har-
monic theory. However, it gives rise to anharmonic in-
teraction of magnons [20] as it creates/annihilates a spin-
flip in a proximity of another spin flip, with contributions
from the nearest bonds not canceling out. Thus, tran-
sitions are generated between single- and two-magnon
states, which can lead to renormalization of the bands
and, most importantly, to magnon damping.

With the formal details given in [16], the resultant cu-
bic interaction of magnons obtained from (4) is [21]

3 _ D 28 v t
How =5\ >N U bl bl b, L+ He,  (5)

k,q vun
with the vertex <I>(Vl’1?p =F (';l’jg + Fﬁ‘gg and the amplitude
Flth =" e cos(gpa) wy.a(Q)wy,s(K)wys(p),  (6)

af

where w, = (w,,1, W, 2, w, 3) are the eigenvectors of the
3 x 3 matrix diagonalized for the harmonic theory. A
generalization of this consideration to an arbitrary M-D
angle is achieved by D — Dsin6 in (4) and (5), also keep-
ing in mind that the eigenvectors w, in (6) change with
D cos @ according to the diagonalization leading to (3).
Thus, the harmonic and the anharmonic Hamiltonians
(3) and (5) complement each other for any 6 0.

We note that at T'=0, the four-magnon terms do not
directly affect the spectrum of the model (1) as they nec-
essarily have a bTbTbb form [16, 22].

Kinematics and two-magnon DoS.—Because the an-
harmonic term (5) provides a coupling of the single-
particle branches with the two-magnon continuum, the
properties of the latter are of interest. Consider M 1L D.
From the point of view of the harmonic theory, magnon
bands are not affected by the DM term, see Fig. 2, with
the flat band (mode 1) degenerate with the dispersive
band (mode 3) at the I' point. Crucially, the two-magnon
continuum is highly degenerate at this point because of a
ubiquitous property of the magnon spectra of ferromag-
nets on the non-Bravais lattices. Namely, the two dis-
persive modes are mirror reflections of each other with
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FIG. 2: The LSWT two-magnon DoS (7) for mode 1, M L D.
Inset: schematics of a magnon decay from k=0.



respect to their energy at the K-point, which is also pre-
cisely one half of the flat mode energy, see Fig. 2. One
can easily check that the same structure persists for the
pyrochlore and honeycomb lattices [8, 23, 24]. Because
of that property, the condition €1 =¢€9 q+€3,_q is met for
any value of the momentum q [24]. This is a much higher
degeneracy than the ones leading to more traditional van
Hove singularities of the two-magnon continua [20].

A useful quantitative characteristics of the continuum
is the on-shell, w = ¢, x, two-magnon density-of-states
(DoS), which is also a proxy of the on-shell decay rate

Dfl)c =7 Z 6 (epx—Ev,a—€nk—a) » (7)

a,.vn
shown in Fig. 2 for the flat mode, p=1, vs k. It exhibits
a strong 1/|k| divergence at k — 0 due to the high de-
generacy in the two-magnon continuum discussed above.
The divergent behavior at k— 0 is identical for ;=3 [16].

This consideration implies that an arbitrary weak cou-
pling of the single-magnon and two-magnon states com-
pletely invalidates predictions of the harmonic theory by
causing a divergent damping in the optical magnons at
k—0. Asisshown below, a self-consistent treatment reg-
ularizes this divergence, but leaves an anomalously large,
non-analytic and non-perturbative damping, I'ex |D|, for
both optical magnon modes near the I'-point and in a
broad range of |k| < D/J also controlled by D.

Decays and regularization.—One can expect the on-
shell decay rate of a magnon due to cubic terms (5)

wSD? ~
Fpx= i\, Z |‘I);?£_q;k|25(5u7k_5wq_5n7k—q) , (8)
a,vn

to be small for realistic parameters as it is oc D?/J. This
is indeed the case for the Goldstone branch (mode 2), for
which damping is also suppressed kinematically except
for large momenta [16]. However, because of the degen-
eracy of the two-magnon DoS, damping (8) of the mode 3
is divergent as 1/|k|, thus suggesting a much stronger ef-
fect. The situation is less conspicuous for the flat mode,
as the expected similar divergence in (8) is preempted
by a subtle cancellation in the vertex, leading to a finite,
O(D?), damping at k— 0 [16]. However, this cancellation
is lifted in the off-shell consideration, which, counterin-
tuitively, leads to a strongly enhanced decay rate of the
flat mode in the self-consistent treatment. We note that
the real part of the same self-energy [25] also diverges for
both optical magnon modes, but its divergence is much
weaker [16], Re 3, x ocIn [k|.

A regularization of the divergencies is achieved via
a self-consistent solution of the Dyson’s equation (DE),
which naturally accounts for the damping of the initial-
state magnon, w—e,x — X, k(w*) = 0, where ¥, «(w)
is the self-energy due to cubic terms and the complex
conjugate w* respects causality, see [26]. The real and
imaginary parts of this equation have to be solved to-
gether. However, once the initial-state damping is in-
troduced, the weak divergence in the real part will be

cut [26]. Therefore, for small d=D/J, it will constitute
a small energy correction, o d?In|d|, neglecting which
yields an “imaginary-only” Dyson’s equation, which we
coin as iDE: I, k. =—Im ¥, x (e, x + i, x), or, explicitly

SD? [P qad”

1 =
2 2 .
N a,vn (Enk—Eva—Enk—-a) + I x

9)

With the numerical results for the iDE to follow, its key
result can be appreciated. At small |k|, the difference of
magnon energies in (9) for the divergent decay channels
p— {2,3} is negligible, giving: T, x—0~|D|V/S. Physi-
cally, the “fuzziness” of the initial-state magnon removes
strict energy-momentum conservations in the decay pro-
cess, regularizing the divergencies.

This constitutes the main result of the iDE regular-
ization. The decay rate of both flat and gapped modes
for M L D at k— 0 is given by a non-perturbative an-
swer, I'y(3) k oc | D], strongly enhanced compared to the
perturbative expectations. The k-region in which the
broadening is strongly enhanced can be easily estimated
as |k| S |k*|oc|D|/J with the damping decreasing to the
perturbative values, T'3(1) x 0x D?/J, for |k| 2 |k*|.

The numerical solutions of the iDE (9) for damping ',
for all three magnon modes for S=1/2 and D/J =0.3
are shown in Fig. 3 along the KI'MK path. One can see
that, indeed, the damping is strongly enhanced in the
|k| < |D|/J region around the I' point for the flat and
dispersive optical modes, see also [16] for other values of
D/J. The inset shows the full width of magnon spectral
lines at half-maximum, ex+T'yk, to demonstrate effects of
the broadening on the magnon spectrum. One can also
see that the decay rates of modes 1 and 3 at k=0 coincide
because of the symmetry of the the cubic vertices [16].
Some remnants of the more conventional, logarithmic van
Hove singularities [20] can be seen in both Figs. 3 and 4.

Angular dependence.—Since magnetization is not
pinned for model (1), one can manipulate its direction.
Then, the natural question is: how does one transition
from the well-defined excitations with the gap o< D to the
broadened excitations with the widths oc D as a function
of the M—D angle 07

02 D _ 0 '3 J JI e et
015 T D g mode 1
' M G
S
] Y
% 0.1F i -
L M1D K T K M K
0.05 3 1 [ ~rind]
2
0]
K r Kk M K

FIG. 3: Solutions of the iDE (9) for D/J=0.3, S=1/2 along
the KI'MK path. Inset: the FWHM of spectral lines, ex4T'k.



For 6 < w/2, magnetization is partially along D and
magnon bands split due to complex hoppings (~ cos ),
while cubic interaction in (5) is reduced (~sinf) as de-
scribed above. The main complication is that, for M /D,
the eigenvectors in the vertices (6), w,, are not derivable
analytically in a compact form [27], and have to be ob-
tained numerically from diagonalization of the 3 x 3 ma-
trix [16]. Physically, the band splitting also contributes
to regularization of singularities in magnon decays.

In Fig. 4, we provide detailed predictions for the an-
gular dependence of the damping of the optical magnon
modes obtained from iDE (9). Fig. 4(a) shows a gradual
decrease of the broadening for both modes at k=0 from
its maximal value to zero upon the decrease of the an-
gle 0, with the insets showing I';, x along the KI'M path
for several values of the angle. Fig. 4(b) panels present
the 2D intensity plots of the broadening of the mode 3
in k-space for three different angles. These results com-
plement the data in Figs. 3 and 4(a) and demonstrate
a rather dramatic distribution of the broadening in the
Brillouin zone and its nontrivial evolution with the an-
gle. This detailed picture is completed in Fig. 4(c) by the
k — 0 intensity maps of the broadening for both optical
modes along the KI'M path. They reveal an interesting
contribution of the conventional van Hove singularities
of the two-magnon continuum and highlight an unusual
evolution of the magnon linewidth.

Our minimal-model consideration may seem to imply
that there is always a special direction of M that can al-
low one to switch off cubic anharmonic coupling and asso-
ciated decay effects. However, in a more general and real-
istic setting, the DM term has both in- and out-of-plane
components [8, 9], making magnon decays inevitable. It
is, thus, imperative to take their effects into account in a
consideration of magnon bands in real materials.
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FIG. 4: (a) I'y(3),k=0 Vvs 0. Insets: I', x along the KI'M path
for several 6. (b) The 2D intensity distributions of I'sx in
k-space for w/2, w/3, and 7/4. (c) The k — 0 intensity maps
of I'y (3),x along the KI'M path. D/J=0.3, S=1/2.

Ezxperiments.—FExperimental evidence of the broaden-
ing of the flat mode in the vicinity of k = 0 has been
recently reported for a kagome-lattice ferromagnet with
D,/J = 0.15 [9]. For M L D, the broadening varying
from 0.05J in external field to 0.13J in zero field was
suggested, see Supplemental material of [9]. Our consid-
eration yields the broadening of both optical modes of
a somewhat lesser value of 0.09.J in zero field [16]. One
can suggest that a larger broadening can be registered
due to the overlap of the two modes. Other experimen-
tal factors that can affect a direct comparison include
averaging of the data over a range of k and contribu-
tions of the in-plane DM components to decays. The
close agreement with the available data and our detailed
predictions above call for a closer experimental analysis
of the suggested dramatic broadening effects. They can
be tested by the neutron-scattering, resonant neutron-
scattering spin-echo, and by ESR.

Summary.—We demonstrated that the idea of non-
interacting topologically nontrivial bands, familiar from
fermionic systems, cannot be trivially transplanted to
bosonic systems such as ferromagnets on the geomet-
rically frustrated lattices. The key difference is in the
particle-non-conserving terms that are generated by the
same interactions that are necessary for the sought-after
Berry curvature of the bands. These terms, combined
with a ubiquitous degeneracy of the two-magnon contin-
uum, produce a substantial broadening of magnon bands
precisely in the ranges of k and w that are essential for
the topological properties to occur, thus potentially un-
dermining the entire free-band consideration. Same phe-
nomena should be common to ultracold atomic, phonon-
like, and other bosonic systems. How the topologically-
nontrivial properties of the bands can be defined in the
presence of a substantial broadening remains an open
question.
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