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We show that a Fermi surface reconstruction due to spiral antiferromagnetic order may explain the
rapid change in the Hall number as recently observed near optimal doping in cuprate superconductors

[Badoux et al., Nature 531, 210 (2016)].

The single-particle spectral function in the spiral state

exhibits hole pockets which look like Fermi arcs due to a strong momentum dependence of the spectral
weight. Adding charge-density wave order further reduces the Fermi surface to a single electron
pocket. We propose quantum oscillation measurements to distinguish between commensurate and
spiral antiferromagnetic order. Similar results apply to certain metals in which topological order

replaces antiferromagnetic order.

PACS numbers: 71.10.Fd, 74.20.-z, 75.10.-b

Introduction.— Cuprate superconductors evolve from a
Mott insulator to a correlated metal with increasing hole
doping p. Long ago it was suggested that this evolution
involves a quantum critical point (QCP) near optimal
doping, and that the associated fluctuations are responsi-
ble for the high critical temperature for superconductivity
[1-3]. The existence and nature of this QCP has not been
clarified yet, because it is masked by superconductivity.
Recently, the normal ground state became accessible by
suppressing superconductivity with high magnetic fields.
Near optimal doping in YBCO, Badoux et al. reported
a rapid change of the Hall number ny = (Rye)~! with
doping [4]. A similar behavior consistent with a drastic
drop of the charge carrier density upon lowering the dop-
ing was found shortly after in the Hall number and the
resistivity of several cuprate materials [5, 6]. These results
suggest that a QCP at optimal doping is associated with
the reconstruction of a large Fermi surface enclosing a
volume corresponding to a density 1+ p of empty states
(holes) at large doping, to small pockets with a volume cor-
responding to a hole-density p in the underdoped regime.
Moreover, these experiments indicate that the QCP for
the closing of the pseudogap [4, 7] is distinct from that
for the disappearance of charge order [8].

The observed transition in the charge carrier density
could be associated with the termination of novel pseudo-
gap metals without magnetic order [9-12] or a QCP at
which charge-density wave (CDW) [13] or Neel-type anti-
ferromagnetic (AF) [14] order disappears. However, there
is experimental evidence at least for YBCO that magnetic
order in the ground state of the underdoped regime is
incommensurate [15, 16]. From theoretical arguments,
incommensurate AF has been shown to be favorable long
ago for weakly doped Hubbard and ¢-J models [17-27].
Recent renormalization group calculations suggest that
incommensurate AF can coexist with superconductivity
in a broad doping range [28]. The energy gain from the

magnetic order is tiny beyond the underdoped regime,
but it becomes much more robust when superconductiv-
ity is suppressed. This raises the question whether the
transition in the Hall number as seen in experiment could
be caused by incommensurate antiferromagnetic order.

In this letter, we show that a quantum phase transi-
tion from a paramagnetic metal to a spiral antiferromag-
netic metal with order parameter may indeed give rise
to a crossover from 1 + p to p in the Hall number as
seen in cuprates [4]. Moreover, we find that the single-
particle spectral function exhibits hole pockets with a
strong spectral weight anisotropy reminiscent of Fermi
arcs. Additional charge-density wave order can lead to a
single electron pocket, with no additional Fermi surfaces,
as observed [29]. To discriminate incommensurate spiral
from commensurate antiferromagnetic order we propose
a quantum oscillation experiment. We also note that
certain topological Fermi liquids [30] have charge trans-
port properties nearly identical to those of metals with
magnetic order. And so our transport results apply also
to such states.

Spiral states.— In the following we describe spiral anti-
ferromagnetic states using the mean-field Hamiltonian [27]
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where &, = —2t(cosk, + cos ky) — 4t' cos kg cos ky — 1 is
the fermionic dispersion, A the antiferromagnetic gap
and @ = (m — 27n,7) the ordering wave vector. We
choose the hopping amplitude ¢ = 1 as our unit of energy
in all numerical results. Diagonalization of Hyp yields
Hyr = Zk,i:l,Q Ek,ia};iaki, where

B2 = % F \/i(fk —&r@)2+ A2, (2

The quasi-particle operators ag; are related to the bare
fermion operators by cxr = >, Uk,1jak; and cprqy =
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is the orthogonal transformation that diagonalizes Hyip.
In a spiral antiferromagnetic state, the magnetic moments
rotate in the zy plane and their directions are modulated
by the wave vector @ as m(R;) ~ cos(Q- R;)e, +sin(Q -
R;)e,, where R; is a lattice vector.

We make the ansatz A(p) = o (p* —p) O(p* — p) for
the doping dependence of the gap, motivated by results
for the on-site magnetization in spiral states in the ¢-t'-J
model [25]. A similar linear doping dependence of the
gap in underdoped cuprates is also found in resonating
valence bond mean-field theories for the ¢-J-model [9] or
the pseudogap energy scale seen in experiments [31]. For
every doping p, the incommensurability 7 is determined by
minimizing the free energy at fixed A. More details on the
doping dependence of 17 can be found in the supplementary
material [32].

Fermi surface and spectral function.— Filling the quasi-
particle bands Ej 1 /o of the spiral state up to the Fermi
level yields hole and sometimes electron pockets as shown
in the left panel of Fig. 1. For small doping one obtains
only two hole pockets [25], while for larger doping two
electron pockets appear in addition. Spiral states with
four hole pockets are also possible in principle [33], but
were not obtained in the present study if the incommensu-
rability # is chosen such that the free energy is minimized.

The spectral function for single-particle excitations is
given by A(k,w) =), A,(k,w), where

Ar(k,w) = > Up,;6(w — Egy), (4)
i=1,2

A (k,w) = Z Ulng,zi‘S(W - Ek*Q,i) (5)
i=1,2

Numerical results for the spectral function at w = 0 are
shown in the right panel of Fig. 1 for two different hole
dopings. The momentum shift by @ in the quasi-particle
bands contributing to A (k,w) generates a shifted copy
of all pockets. The total (spin summed) spectral function
is thus inversion symmetric, but still exhibits a slight
nematic deformation.

A most intriguing feature is that for small doping we
obtain Fermi pockets with a strongly suppressed spectral
weight at their backside, reminiscent of the mysterious
Fermi arcs observed in underdoped cuprates. Let us
see how this comes about for the hole-pockets related to
particles with spin up. Their contribution to the spectral
weight at w = 0 is given by U£,115(Ek_,1), where U,ill =
A%/(A? + &) for B = 0. From Fig. 1 it is clear that a
large fraction of the inner side of the pockets is very close
to the bare Fermi surface, where & = 0. Hence U, ,3711 and
thus the spectral weight there is almost one. The back
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Figure 1: Quasi-particle Fermi surfaces (left) and single-
electron spectral functions (right) of spiral antiferromag-
netic states for p = 0.08, A = 0.63 (top) and p = 0.15,
A = 0.23 (bottom), where ¢’ = —0.35 and 7 ~ p. Hole
and electron pockets in the left panels are marked in red
and green, respectively, while the thin lines indicate the
bare (black) and the @ shifted (blue) unreconstructed
Fermi surfaces.

side of the pocket is remote from the bare Fermi surface
so that A < & and the spectral weight is thus quite
small. A similar spectral function, albeit with fourfold
rotation symmetry, is obtained in the commensurate case
for n = 0.

Hall coefficient.— The Hall coeflicient is defined as
Ry = oy /(0440yy), where oy is the Hall conductivity
and 0, is the longitudinal conductivity in direction a.
We compute the conductivities in a relaxation time ap-
proximation with a momentum independent scattering
time 7. Neglecting “interband” scattering between the
two quasi-particle bands Fj; and Fy 2, the conductivi-
ties in the spiral state are given by the same expressions
as for non-interacting two-band systems [34]. Although
the magnetic fields applied in the recent experiments by
Badoux et al. [4] are impressively high, the product w.7
is still small since the relaxation time 7 is rather short
(we = cyclotron frequency). In the so-called weak-field
limit w,7 < 1, one obtains [34]
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Figure 2: Hall number ny as a function of doping for
t" = —0.35. Results for a linear dependence, A(p) ~
(p* — p), and a square root dependence, A(p) ~ \/p* — p,
where p* = 0.19 in both cases, are labeled as “Lin” and
“Sqrt”, respectively. The thin lines mark ny = p and
1+0p.

Note that the 7-dependence cancels in the Hall coefficient
Rpy. The Hall number is defined as ng = (RHe)_l. In
special cases such as parabolic dispersions, or for generic
band structures with closed Fermi surfaces in the high-
field limit w.7 > 1, the Hall number is simply given by
the charge carrier density [35].

Results for the doping dependence of ngy are shown
for different values of the antiferromagnetic gap in Fig. 2.
At small doping, ng is roughly given by the hole density
p. Near p* = 0.19, ng crosses over to 1 + p. In the
weak-field limit, the width of this crossover depends on
the size of the antiferromagnetic gap. Larger gaps, or
a square root doping dependence of the gap, lead to a
sharper crossover. In the crossover region, the Fermi
surface consists of hole and electron pockets, which is
similar to the commensurate case and the YRZ scenarios
studied in Ref. [14].

In the high field limit w.7 > 1 and at zero temperature,
ny is expected to be equal to the sum of the charge carrier
densities of all Fermi pockets weighted by their sign, which
is equal to the doping level p. One would thus expect a
jump in ng from p to 1+ p in the high-field limit. The
width of the crossover at weak and intermediate fields
depends on the Fermi surface geometry, temperature, and
the field strength.

Quantum oscillations.— The measurements of the Hall
coefficient by Badoux et al. [4] are consistent with both a
commensurate Néel state and an incommensurate spiral
state. The Hall signal involves a sum over all Fermi surface
sheets. For sufficiently high fields, the Hall number is
given by the sum over all areas enclosed by the Fermi
surface sheets, with electron-like Fermi surfaces counting
negatively. Luttinger’s theorem then implies that the
Hall number is equal to doping p, irrespective of the

Figure 3: Comparison between hole Fermi pockets of
(a) incommensurate and (b) commensurate antiferromag-
netic states with hole density p = 0.1 for ¢’ = —0.35 and
A=0.7.1n=0.11ina).

incommensurability.

As an example, in Fig. 3 we show Fermi surfaces for a
Néel state and an incommensurate spiral state at p = 0.1
for parameters where only hole pockets appear. In the
Néel state, the hole density is given by

A’k d%k
" U:Zm /MBZ (2m)2 O(E) = /BZ (2m) O(F.)
(8)

where integrals marked with MBZ and BZ are over the
magnetic and full Brillouin zone, respectively. In the
spiral state, one has
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The integrals measure the area of the hole pockets. The
total area is the same in both cases and is determined by
.

However, the single pockets in the spiral state are twice
as large as the pockets in the Néel state. Spiral states
could therefore be distinguished by quantum oscillations
in the magnetic field dependence, as pointed out previ-
ously by Sebastian et al. [33]. For w.7 > 1, the magnetic
susceptibility and other response quantities exhibit pe-
riodic oscillations as a function of B~! due to Landau
quantization [35]. Each closed Fermi surface sheet yields
a signal with an oscillation frequency

F=(AaBH) =2, (10)

where S is the enclosed momentum space area. The
pocket areas in the commensurate Néel state with four
hole pockets and the incommensurate spiral state with
two hole pockets are

2ﬂ)2g
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Figure 4: Reconstructed quasi-particle Fermi surface
due to spiral antiferromagnetic and charge-density wave
order (red). The symmetry of the order parameter of the
latter is a) s-wave and b) d-wave. The parameters are
t' = —0.35,p~ 0.12,n = 0.125 and A = 0.9 for both
and a) C' = 0.15 and b) C' = 0.72. The black dashed
lines show the Fermi surface of the spiral antiferromag-
netic state after backfolding to the reduced Brillouin
zone (i.e. C' = 0). The electron pockets are shaded in

grey.

respectively, where a is the lattice constant. The quantum
oscillation frequencies of incommensurate spiral states
are thus expected to be twice as large as those of Néel
states at the same hole density. In particular, with the
in-plane lattice constant of YBCO, a = 3.8A, one obtains
the oscillation frequencies Fearp = 7160T - p and Fiar =
14320T - p.

Fermi surface for coexisting spiral antiferromagnetic
and charge-density wave orders.— Cuprates show strong
charge-density wave (CDW) correlations for p ~ 0.12,
which become long-ranged in high magnetic fields [36—
42]. In the field-induced ordered state, measurements of
quantum oscillations and the Hall or Seebeck coefficient
indicate a reconstruction of the Fermi surface into an elec-
tron Fermi pocket [43-46], and no additional hole pockets
are found in single-layer materials [47]. Theoretical at-
tempts to explain this reconstruction starting from a large
hole Fermi surface [48] or the YRZ ansatz with small hole
pockets [49] yielded additional open Fermi surface sheets
or hole pockets. A reconstruction into one electron pocket
could work starting from four Fermi arcs [50], but that
proposal did not answer the question about their origin.

Coexisting spiral AF and bidirectional CDW order can
be described by adding

Hepw = —C Z f(k+ %) (c,Tchqigckg + cjwckJrqu)
k,o,i
(12)
to Eq. (1), where C' is the CDW order parameter. Bidi-
rectional CDW order with ordering wave vectors q; =
(m/2,0) and g, = (0,7/2) is chosen as a simple approxi-
mation for the (incommensurate) CDW with a period of

roughly four lattice constants that is seen in experiments.
The form factor f(k) is of predominantly d-wave symme-
try (f(k) = cosk, — cosk,) in cuprates. We determine
the Fermi surface for this symmetry and an onsite CDW
with s-wave symmetry (f(k) = 1). In Fig. 4 we show that
CDW order of both symmetries can reconstruct the two
hole Fermi pockets of the spiral state (similar to those in
Fig. 3a) into a single electron pocket. For d-wave CDW
order with a smaller order parameter, the resulting Fermi
surface is qualitatively similar to Fig. 4a [32]. Intriguingly,
larger d-wave CDW order parameters, as in Fig. 4b, can
give rise to additional Dirac cones in the spectrum. These
arise from the inversion of two bands with different spin
chirality, similar to topological insulators with spin-orbit
coupling.

Conclusions.— We have shown that spiral antiferromag-
netism may explain several features of the phenomenology
of hole-doped cuprates. The spectral function of spiral an-
tiferromagnetic states consists of hole pockets, which due
to a strong momentum dependence of the spectral weight
look like Fermi arcs. The Fermi surface reconstruction at
a quantum critical point due to spiral antiferromagnetic
order may explain the rapid change in the Hall number
as recently observed near optimal doping in cuprate su-
perconductors. In a doping regime where it is observed
in cuprates, additional charge-density wave order further
reconstructs the hole Fermi surface of the spiral antiferro-
magnetic state into a single electron pocket.

Metals with topological order can have the same charge
transport properties as metals with magnetic order [30],
but their fermionic quasiparticles carry a pseudospin with
no Zeeman coupling, and so can be distinguished in quan-
tum oscillation or low T" photoemission.

The detection of spiral antiferromagnetic order, or
quantum-fluctuating order in the topological metals, in
hole-doped cuprates near optimal doping would signifi-
cantly improve our understanding of the cuprate phase di-
agram. Incommensurate antiferromagnetism is expected
from a theoretical point of view and is favorable over
Néel-type antiferromagnetism. We propose quantum os-
cillation measurements to distinguish between Néel-type
and spiral antiferromagnetic order.
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