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We report simultaneous transport and scanning Microwave Impedance Microscopy to examine the correla-

tion between transport quantization and filling of the bulk Landau levels in the quantum Hall regime in gated

graphene devices. Surprisingly, comparison of these measurements reveals that quantized transport typically

occurs below complete filling of bulk Landau levels, when the bulk is still conductive. This result points to a

revised understanding of transport quantization when carriers are accumulated by gating. We discuss the im-

plications on transport study of the quantum Hall effect in graphene and related topological states in other two

dimensional electron systems.

PACS numbers: 72.80.Vp, 73.43.Fj

The quantum Hall (QH) effect [1] has proven to be a pow-

erful tool for understanding the physics of two dimensional

electron systems (2DESs). The occurrence of transport quan-

tization has been associated with the topological order of the

Landau levels (LLs) in the bulk of a 2DES. When carriers

completely fill a bulk LL, the Fermi level lies in the energy

gap above the LL thus the bulk becomes highly incompress-

ible [2]. The transverse Hall conductance is determined by

the total Chern number of the occupied LLs and is therefore

precisely quantized [3–5]. Such correlation between transport

and the bulk topological order has been considered essential

to the robustness of the transport quantization, i.e. insensi-

tive to specific sample details. Based on such correlation be-

tween transport and bulk filling, transport measurements have

been used to infer properties of the bulk. This approach, de-

veloped from study of 2DESs based on semiconductor het-

erostructures, has been widely adopted without much exami-

nation in QH studies of graphene [6, 7]. Although governed

by the same basic QH physics, atomically thin systems such as

graphene differ in important ways from semiconductor-based

2DESs. In particular, graphene’s hard wall confining potential

has been predicted to result in charge accumulation near phys-

ical edges under electrostatic gating [8], which has been used

to explain observations in several transport [9–12] and imag-

ing [13] experiments. In the QH regime where the edges play

a crucial role as the connection between bulk state and trans-

port [14–18], how such charge accumulation affects trans-

port quantization remains elusive [11, 12, 19]. A comprehen-

sive understanding requires a detailed study by both transport

and bulk-sensitive techniques on the same gated hall bar. To

this end, we combine a scanning probe technique, Microwave

Impedance Microscopy (MIM), that probes local capacitance

and conductivity [20–22], with simultaneous transport mea-

surement, to directly examine the correlation between trans-

port and bulk filling in graphene devices. We uncover a corre-

lation that is very different from the commonly assumed pic-

ture: each transport plateau occurs at ∼ 90% filling of the bulk

LLs, when the bulk is still conductive. This points to a revised

spatial configuration for QH transport quantization in gated

films, which will impact many commonly used practices in

QH transport analysis.

We study three high-quality graphene devices: two mono-

layer graphene (MLG) and one bilayer graphene (BLG). In

all cases graphene encapsulated above and below by hexag-

onal boron nitride (hBN) rests atop a dielectric layer of 300

nm SiO2 on a conductive silicon substrate used as a back

gate [Fig. 1(a)]. Electrical contacts to graphene are made

via the recently developed one-dimensional edge metalliza-

tion method [23, 24]. We present data from device MLG #1

in the main text, and data from other devices exhibit qualita-

tively similar behavior and are provided in the Supplemental

Material [24]. These devices show well-developed quantized

plateaux in transport at magnetic fields above 2 T at 5 K [Fig.

1(b)]. To probe the filling of LLs inside the graphene bulk,

we perform MIM: spatially mapping tip-sample admittance

(the inverse of impedance) as we raster a sharp metal tip over

a graphene device. The schematic of the MIM measurement

is shown in Fig. 1(a): a small microwave excitation (0.01-

0.1 µW) at frequency of 1 GHz is delivered to a chemically

etched tungsten tip. The reflected signal is amplified and de-

modulated into two output channels, MIM-Im and MIM-Re,

which are proportional to the imaginary and real parts of the

tip-sample admittance, respectively. Specifically, the imag-

inary component, MIM-Im, is a good measure of the local

resistivity of the graphene as it decreases monotonically with

increasing 2D resistivity [Fig. 1(c)]. When all LLs are filled

or empty in the bulk, the local bulk resistivity is high, indi-

cated by a low signal in the MIM-Im channel. Figure 1(d)

shows the MIM-Im signal recorded during repeated scanning

along a single line across device MLG #1 as the gate is tuned

from -40 V to 40 V. Indeed, a series of high-resistivity fea-

tures matches the LL structure in MLG, i.e. at filling factor
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FIG. 1. (color online) (a) Device structure and circuit schematic of

MIM. (b) Landau fan diagram of device MLG #1 at T = 4.7 K. (c)

Typical response curves of MIM-Im and MIM-Re as a function of 2D

resistivity in a 2DES structure. The MIM-Im signal increases mono-

tonically as the 2DES becomes more conductive and thus provides

better screening, and the MIM-Re signal peaks at an intermediate

resistivity value which maximizes power dissipation. (d) MIM-Im

signals of repeated scans along the same line across MLG #1 as the

carrier density is tuned between p and n types at B = 9 T and T = 4.7

K. The suppression of the MIM-Im signal in the bulk corresponds to

transitions through various Landau levels, matching the established

Landau level structure in MLG. Scale bar is 2 µm.

ν = ±2,±6,±10, as well as the degeneracy-broken levels at

±1 and 0.

Next we examine the correlation between MIM signals in

the bulk and simultaneously measured transport. Figure 2(a)

shows an example of such correlation as the carrier density is

tuned through the ν = 2 LL in MLG #1. Surprisingly, we find

that the range of gate voltages yielding a transport plateau has

very little overlap with the range where the bulk is insulating.

Such deviation is further revealed in the real space MIM-Im

images: at the transport plateau where an insulating bulk sur-

rounded by conductive edges is expected from the commonly

assumed bulk/transport correlation, the MIM-Im image shows

high conductivity in the graphene bulk [Fig. 2(b)]; the insulat-

ing bulk configuration only emerges at a higher gate value at

which the transport is already exiting the plateau [Fig. 2(c)].

Such deviation between transport plateau and insulating

bulk occurs systematically as a function of carrier density

and magnetic field. We specifically compare the MIM sig-

nal measured inside the bulk with Rxx simultaneously mea-

sured through 4-terminal transport. In Fig. 3(a) we plot an

example comparison of Rxx and d(MIM-Im)/dz for MLG #1.

[d(MIM-Im)/dz behaves similarly to MIM-Im. See [24] for
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FIG. 2. (color online) (a) Comparison of longitudinal resistance (red

curve in the upper panel), normalized transverse Hall conductance

(green curve in the upper panel), and MIM-Im signal averaged over a

small region inside the graphene bulk (blue curve in the lower panel),

measured at T = 4.7 K and B = 9 T for device MLG #1. The shaded

regions mark the transport plateau (green) and the incompressible

bulk transition (blue), respectively. The difference in gate voltage

between the center of the Rxx minimum and the center of the MIM-

Im minimum is 1.6 V. (b, c) Real space images of MIM-Im signal at

gate values corresponding to the center of the transport plateau and

the minimum of the bulk MIM-Im signal, as indicated by the arrows.

Scale bar is 2 µm.

description of d(MIM-Im)/dz measurement and more data.]

In both curves, a series of minima appear in Rxx (matching

plateaus in Rxy) and d(MIM-Im)/dz. The corresponding gate

voltages are defined as VLL,R and VLL,MIM , respectively. To

demonstrate that VLL,MIM is a consistent measure of the bulk

LL filling, we analyze the normalized capacitance determined

from these gate voltages. The bulk carrier density induced

by a gate voltage, Vg, is ρbulk = Cg(Vg −Vg0) where Cg is the

graphene-to-gate capacitance per unit area and Vg0 the charge

neutrality point. (The tip could also perturb the local carrier

density due to a potential difference between tip and graphene.

In our experiment, we have carefully checked the effect of

tip bias and minimized it by applying a voltage on the tip

to compensate the potential difference.) When these carri-

ers completely fill LLs up to an integer filling factor in the

bulk, the density should be equal to the total density provided

by the filled LLs, i.e. Cg(Vg −Vg0) = νρ0 = νeB/h where

ρ0 is the density accommodated by a non-degenerate LL de-

termined by the electron charge e, the magnetic field B, and

the Planck constant h. This leads to a normalized quantity,

(Vg−Vg0)/νB = e/hCg, which is expected to be a constant for

a specific device [25]. Figure 3(b) plots this quantity calcu-

lated from both VLL,R and VLL,MIM at different LLs. VLL,MIM

provides consistent values across all LLs while the values

calculated from VLL,R have large variations. This confirms

that VLL,MIM corresponds to the complete filling of the bulk

LLs. We now examine the deviation in gate voltage between

a transport plateau and the complete filling of the correspond-

ing bulk LL, i.e. ∆Vg = VLL,MIM −VLL,R. ∆Vg is not zero for

most LLs, and the deviations as a function of bulk state fill-
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FIG. 3. (color online) (a) Simultaneous measurement of Rxx (upper panel) and d(MIM-Im)/dz (lower panel) for MLG #1 at B = 7 T and T =

4.7 K. (b) (Vg −Vg0)/νB plotted as a function of Landau level filling factor ν. (c) ∆Vg plotted as a function of VLL,MIM which is proportional

to the bulk density.

ing have approximately the same linear behavior independent

of magnetic field, except that the electron and hole sides have

different slopes. We believe that such electron-hole asymme-

try is an extrinsic effect likely due to charge impurities near

edges; thus the carrier polarity that has a larger slope would

represent the intrinsic behavior in these devices. In fact, in one

device with naturally occurring graphene edges fully encapsu-

lated between hBN layers, such asymmetry is much reduced.

(See discussions in [24].) We find that the linearity slope

η for the ∆Vg versus VLL,MIM plot varies only slightly across

the three devices, ranging between 7.8% and 9.7% [24]. This

value suggests that the transport plateau occurs at a bulk den-

sity ρbulk =(1−η) ·νρ0 ≈ 90% ·νρ0 for the LL at filling factor

ν.

To explain our experimental results, it is necessary to in-

voke a microscopic picture of QH transport quantization.

There are currently two major models under active debate in

the QH community: 1) the edge state picture in which dissipa-

tionless transport current is carried only by the edge states; 2)

the incompressible state picture in which dissipationless trans-

port current flows only in the incompressible regions where

LLs are completely filled. Our results can be explained self-

consistently within either model, and our conclusions on how

to refine transport-based analysis of QH effect in graphene

(which will be discussed later in the paper) do not depend on

the model choice. To facilitate our discussion, we work in

the incompressible state picture (for a review, see [18] and

references therein). The essence of this picture is that the dis-

sipationless transport current flows only in the incompressible

regions, hence the transport quantization depends on the spa-

tial structure of such regions. In the incompressible regions,

carriers cannot rearrange to screen electrostatic potential vari-

ations [2, 26], allowing a transverse Hall potential drop [27–

29]. The transverse electric field associated with this potential

drop induces a drift velocity along the longitudinal direction

for the occupied states, translating into a dissipationless cur-

rent density. Integration of the current density over the entire

incompressible region gives rise to a quantized transverse Hall

conductance determined by the Landau level filling factor ν in

the incompressible region. In a Hall bar geometry, the condi-

tions to measure a quantized conductance νh/e2 are: 1) the

incompressible regions at filling factor ν are able to percolate

through the sample and connect to the current leads, and 2)

the voltage probes are able to achieve a full equilibration in

chemical potential with the boundaries of these incompress-

ible regions [17, 18].

To explain the observed deviation between transport and

bulk filling, it is important to examine the spatial variation of

carrier density, especially near the edges. Due to the hard wall

confining potential of graphene, electrostatic back gating will

naturally induce more charges near edges than in the bulk [8].

We simulate this effect using finite element software and take

into account the LL energy structure of MLG. Example car-

rier density profiles are plotted in Fig. 4 for the case of ν = 2.

For the profile corresponding to the transport plateau where

ρbulk = 90% ·2ρ0 (the red curve), the carrier density is at 90%

filling in the bulk and increases to cross 2ρ0 at ∼ 250 nm away

from the physical edge. Around the crossing position, an in-

compressible region forms where the density stays constant

at 2ρ0 [2, 18, 26]. Since transport quantization is achieved

in our experiments, transverse Hall voltage drops must be

established across the two incompressible strips at 2ρ0, one

near each edge, and under this same gating condition the volt-

age probes must be able to establish a full equilibration with

the boundaries of the incompressible strips. This scenario is

similar to the higher-than-integer bulk filling (lower magnetic

field) side of a QH plateau in a GaAs-based 2DES [18]. In

this graphene system, upon further filling the incompressible

strips will move into the bulk, and eventually merge when the

bulk reaches complete filling. The charge accumulation re-

gion will become considerably wider (see the blue curve in

Fig. 4). We suspect that the reason for losing transport quanti-

zation is because additional incompressible strips can emerge

at positions where the accumulated carrier density reaches the

next LL near the edge, thus perturbing the equilibration be-

tween the voltage probes and the ν = 2 incompressible bulk.

Since the electrostatically induced density profile scales lin-

early with the back gate voltage, the profile for the ν-th trans-

port plateau, when normalized by the corresponding value of

the bulk density, νρ0, has the same shape as that for ν = 2:
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FIG. 4. (color online) Simulated carrier density profiles correspond-

ing to the transport plateau (red) of ν = 2, which is at 90% filling of

the bulk LLs, and the completely filled bulk (blue). The density is

normalized by the density value corresponding to the complete fill-

ing of the bulk LLs, in this case, 2ρ0. The upper inset shows the

electric field distribution. An incompressible strip forms near the po-

sition where the density crosses the complete filling value. The dis-

tance of the incompressible strip from the graphene edge is ∼ 250

nm, independent of the particular LL. The lower inset shows the

real-space conductivity configuration corresponding to the transport

plateau: the conductive edge region is separated from the conductive

bulk by the incompressible strip.

the bulk density is 90% ·νρ0 and the profile crosses the com-

plete filling of νρ0 around the same position ∼ 250 nm away

from the physical edge. The only difference from one trans-

port plateau to the next is that the width of the incompressible

strip also depends on the energy gap which varies at differ-

ent LLs. Based on the electrostatic modeling and previous

analysis, the observation of η = 90% implies that the condi-

tion to achieve the QH transport quantization at filling fac-

tor ν in gated graphene devices is when the gate-induced car-

rier profile crosses integer filling (νρ0) ∼ 250 nm away from

the physical edge so that only one incompressible strip forms

near each edge. The next higher density incompressible strip

would be so close to the edge that the potential slope would

be very steep, so the strip would be very narrow and easy to

tunnel across – the incipient incompressible strip at 6ρ0 (nor-

malized density 3) is barely visible in the simulation in Fig.

4.

In the following we discuss the implications of the observed

correlation between transport and bulk filling on a variety of

experiments in the study of the QH effect in graphene as well

as transport in other related 2D topological systems. The

spatial configuration of incompressible regions at QH trans-

port quantization is the basis for analyzing many transport

results. The well-established correlation between transport

plateau and bulk filling based on studies in semiconductor-

based 2DESs has been widely adopted in the QH community

and naturally assumed to apply for graphene devices. How-

ever, our experiment reveals that the picture in gated graphene

devices with a dielectric layer of 300 nm SiO2, the most

widely used geometry in graphene research, deviates from

the conventional correlation in a non-trivial way: the QH

transport quantization occurs when the bulk is still conduc-

tive with partially filled LLs. Therefore, many common prac-

tices used in the QH study on such device geometry need to

be re-examined for validity. 1) For example, the conventional

method of estimating the bulk carrier density based on QH

plateau positions likely needs to be corrected. 2) Transport-

based analysis of dissipation could be affected. Transport dis-

sipation can occur through tunneling across the incompress-

ible region. In the commonly assumed spatial configuration,

a fully incompressible bulk is considered around the center of

the QH plateau, so the tunneling probability is expected to be

exponentially small and is often neglected. Our results sug-

gest that the incompressible region in gated graphene devices

is considerably narrower at the QH plateau so that tunneling

across such regions must be included in the analyses. For ex-

ample, extraction of bulk LL gaps through thermal activation

analysis may not be accurate, because this method assumes

that carriers in the incompressible region are thermally excited

to fill the available states in the next LL, neglecting tunneling

across the broad incompressible region [30]. Our results can

also help guide which regime to use for metrology applica-

tions where QH transport in graphene devices is used as a re-

sistance standard [31–33]. Achieving high accuracy of QH re-

sistance quantization requires minimization of dissipation, fa-

voring wide incompressible regions. Our results suggest that

the edge carrier profile should be carefully considered when

gated graphene devices are used for such purpose [31] because

it can alter the configuration of incompressible regions at QH

plateaux. 3) Transport-based analysis of localization during

the transition between LL plateaux may need to be revisited

since the evolution of the bulk state during the transition is

different from the conventional assumption. For example, the

validity of the variable range hopping model [34] needs to be

re-examined because the bulk localization occurs at a density

value away from the transport plateau.

Understanding edge behaviors also has implications for

transport studies on other 2D topological effects, such as the

quantum spin Hall [35] and quantum anomalous Hall [36]

systems. While signatures of edge transport have been iden-

tified in experiments [37–39], it is important to distinguish

between non-trivial edge states that have a topological origin

and trivial edge states that could also contribute to transport

and even generate transport signatures similar to those ex-

pected for topological modes [22, 40]. The electrostatically-

induced carrier profile that peaks near the edge is not unique to

graphene, so its effect on topological transport in other similar

systems needs to be taken into account and carefully analyzed.

Such an edge effect may also enable new device applications.

Our result suggests ways to manipulate the edge density pro-

file to control the QH transport quantization, such as using

multiple side/back gates to control electrostatic potential pro-

file at the graphene edge [41]. A recent work proposes the

idea of guiding electron waves based on an edge potential in
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graphene [42]. Electrostatic gating thus offers a convenient

way to control and manipulate the edge potential.

To summarize, through a comprehensive study combining

transport and MIM measurements, we observe that QH trans-

port plateaux occur at ∼90% filling of the bulk LLs in gated

graphene devices. Such unconventional correlation between

transport quantization and bulk state filling provides a basis

to understand the QH transport quantization in graphene, and

also has important implications on transport studies in other

2D topological systems.
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[15] M. Büttiker, Phys. Rev. B 38, 9375 (1988).

[16] D. J. Thouless, Phys. Rev. Lett. 71, 1879 (1993).

[17] K. Tsemekhman, V. Tsemekhman, C. Wexler, and D. Thouless,

Solid State Commun. 101, 549 (1997).

[18] J. Weis and K. von Klitzing, Phil. Trans. R. Soc. A 369, 3954

(2011).

[19] H. Hettmansperger, F. Duerr, J. B. Oostinga, C. Gould,

B. Trauzettel, and L. W. Molenkamp, Phys. Rev. B 86, 195417

(2012).

[20] W. Kundhikanjana, K. Lai, M. a. Kelly, and Z. X. Shen, Rev.

Sci. Instrum. 82, 033705 (2011).

[21] K. Lai, W. Kundhikanjana, M. A. Kelly, Z.-X. X. Shen, J. Sha-

bani, and M. Shayegan, Phys. Rev. Lett. 107, 176809 (2011).

[22] E. Y. Ma, M. R. Calvo, J. Wang, B. Lian, M. Mühlbauer,
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