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We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold
atoms. We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman
transitions between left and right wells induce spin-orbit coupling. This scheme does not require near
resonant light, features adjustable interactions by shaping the double-well potential, and does not
depend on special properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously
acquires an antiferromagnetic pseudospin texture which breaks the lattice symmetry similar to a
supersolid.

Spin-orbit coupling is the mechanism for many intrigu-
ing phenomena, including Z2 topological insulators, the
spin quantum Hall effect [1, 2], Majorana fermions [3],
and spintronics devices [4]. Realizing controllable spin-
orbit coupling with ultracold atoms should make it feasi-
ble to explore fundamental aspects of topology in physics
and applications in quantum computing [5].

Spin-orbit coupling requires the atom’s motion to be
dependent on its spin state. Spin-orbit coupling without
spin flips is possible for schemes which are diagonal in the
spin component σz . Such spin-dependent vector poten-
tials, which are sufficient for realizing quantum spin Hall
physics and topological insulators, can be engineered us-
ing far-detuned laser beams to completely suppress spon-
taneous emission [6, 7].

However, spin flips (i.e., spin-orbit coupling terms in-
volving σx or σy operators) are necessary for Rashba [8]
and Dresselhaus [9] spin-orbit coupling [10]. Experiments
with ultracold atoms couple pseudospin states using op-
tical dipole transitions, which couple only to orbital an-
gular momentum of the atom. Most realizations, includ-
ing the first demonstration [11], use hyperfine states of
an alkali atom as pseudospins. In this case, the cou-
pling of the two states occurs due to internal spin-orbit
coupling in the excited state of the atom, which causes
the fine-structure splitting between the D1 and D2 lines.
The optimum detuning of the lasers is comparable to this
splitting, leading to heating. Special atomic species with
orbital angular momentum in the ground state can avoid
this problem, as recently realized with dysprosium [12].
Here we present a new method which can be applied
to any atomic species, using an external orbital degree
of freedom as pseudospin to avoid the need for near-
resonant light.

An external degree of freedom as pseudospin could
be realized for a two-dimensional system by using the
ground and first excited states of the confinement along
the third dimension as pseudospin states. However, the
excited state would rapidly relax due to elastic collisions,
typically on a millisecond time scale [13]. This is also
the case for the recent implementation of SOC with hy-

brid s − p Floquet bands in a one-dimensional optical
lattice [14]. To solve this issue, we choose an asymmetric
double-well potential (Fig. 1).Pseudospins up and down
are realized as the two lowest eigenstates of the double-
well potential. For J/∆ ≪ 1, they can be expressed
by the tight-binding states |l〉 and |r〉 localized in the
left and right wells, respectively: |↓〉 = |l〉 + J

∆ |r〉 and

|↑〉 = |r〉 − J
∆ |l〉. The tunneling J and offset ∆ between

the two wells are used to adjust the overlap—and there-
fore interactions and collisional relaxation rate—between
the two pseudospin states. We couple the two states via
a two-photon Raman transition with large detunings to
achieve SOC with spin flips. (For convenience, we will re-
fer to pseudospin as spin in this paper.) Recent work on
two-leg ladders can be mapped to SOC between the two
legs of the ladder [15, 16]. Our scheme is qualitatively dif-
ferent from other realizations of orbital pseudospin since
it realizes spin-orbit coupling in free space as compared
to lattice models.

An intriguing prediction for spin-orbit coupled Bose-
Einstein condensates (BECs) is the existence of a stripe
phase [17–19], a spontaneous density modulation which
realizes a supersolid [20]. However, when the inter-spin
(g↑↓) and intra-spin (g↑↑, g↓↓) interaction strengths are
the same, increased interaction energy of the density
modulation drives spatial phase separation, eliminating
the stripes. The system can be kept in the miscible phase
when inter-spin interactions are weaker than intra-spin
interactions g2↑↓ < g↑↑g↓↓ [19]. In our realization, g↑↓
is proportional to the overlap squared of the wavefunc-
tions on the two sides of the double-well. An analogous
scheme can be realized with hyperfine pseudospins and
spin-dependent lattices [21], but requires near-resonant
light. Our scheme does not depend on specific atomic
properties and addresses three challenges to realizing the
stripe phase: (1) Spin-orbit coupling without near reso-
nant light, (2) miscible system with adjustable inter-spin
interactions, (3) long lifetime against collisional relax-
ation.

Instead of one double-well system, we create a lattice of
double wells using an optical superlattice (Fig. 1(c)). The
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FIG. 1. (color)Realization of orbital pseudospins in a super-
lattice. (a)The unit cell of the superlattice is a double well
with offset ∆ and tunneling J . The two lowest eigenstates
(pseudospin up and down) are coupled via a two-photon Ra-
man process;(b)Raman process in the band structure of the
superlattice. The ground state with quasimomentum q = 0
is coupled to the edge of the Brillouin zone q = π

d
of the

first excited band; (c)Top view of the superlattice with pe-
riod d = λIR/2 = 532 nm. Raman coupling is implemented
by two λIR beams: one along the superlattice (z direction),
the other along the x-direction. SOC (curved arrows) trans-
fers transverse recoil in the x-direction to the atoms (dashed
arrows).

advantages of working with a stack of coherently coupled
double wells are twofold: increased signal to noise ratio
and use of interference between the double wells to sep-
arately observe the two spin states. In the present work,
the degree of freedom along the superlattice direction is
purely an aid to observation [22].

Our main result is the observation of the momentum
structure of a BEC modified by a superlattice and spin-
orbit coupling (SOC). We first describe the effects of the
superlattice without adding SOC. A one-dimensional su-
perlattice of double wells was realized by combining lat-
tices of λIR = 1064 nm light and λGr = 532 nm light
obtained by frequency doubling the λIR = 1064 nm light.
The shape of the double-well unit cell is determined by
the relative strength and spatial phase φSL between the
two lattices. The phase is controlled by a rotatable dis-
persive glass plate and an acousto-optical modulator for
rapidly switching the IR lattice frequency.

The experiment starts with a BEC of ∼ 3 × 105 23Na
atoms in |F = 1,mF = −1〉 state in a crossed optical
dipole trap. The superlattice is adiabatically ramped
up within 250 ms. For an offset ∆ ≫ J , all the atoms
equilibrate at the band minimum q = 0 of the lowest
superlattice band, putting 100% of the population in
the |↓〉 state. The relative population of the two spin
states can be controlled by first adjusting ∆ for the load-
ing stage to achieve a desired state population and then

rapidly lifting one well up to the final offset [23]. The up-
per well corresponds to the first excited band which has
its minimum energy at quasimomentum q = π/d with
d = λIR/2 (2(a),(b)). Since the lowest energy |↑〉 and
|↓〉 states have different quasimomenta and experience
different transverse confinement, they can be separately
observed in ballistic expansion images without the band-
mapping techniques [23].

The π/d quasimomenta difference also leads to an in-
teresting spin texture for an equal population of |↑〉 and
|↓〉 states. For this, atoms are prepared in both bands
with q = 0 (Fig. 2(c)), corresponding to a wavefunction
periodicity of 532 nm, i.e., the lattice constant. However,
after relaxation, the periodicity has doubled to 1064 nm,
as indicated by the doubled number of momentum com-
ponents in ballistic expansion images (Fig. 2(d)). Specif-
ically, the system was prepared in the symmetric state∑

n(|↓n〉 + |↑n〉) where n denotes the lattice site, which
is a ferromagnetic spin state in the x − y plane. After
relaxation into the state

∑
n(|↓n〉 + (−1)neiθe−i∆t |↑n〉)

an antiferromagnetic spin texture has developed which
reduces the translational symmetry of the lattice. This
system breaks both U(1) symmetry (the phase of the
BEC) and the translational symmetry of the superlat-
tice. In addition to the spin-density wave, it also has a
density wave with the same period due to the interference
of the |↑〉 and |↓〉 satellites. The position of the spin and
density modulations is determined by the spontaneous
phase θ and oscillate at frequency ∆ [23]. It is a simple
system fulfilling one definition of supersolidity [25–27].

The small satellites allow spin-orbit coupling, but also
lead to collisional decay of the |↑〉 state. We observed life-
times on the order of 200 ms for both the |↑〉 and equally
mixed states at a density of n ≈ 2.5 × 1014 cm−3. The
similar lifetimes for both states and its sensitivity to daily
alignment indicate the lifetime being limited by techni-
cal noise and misalignment of the lattice rather than by
collisions. Collisions would lead to a shorter lifetime for
the mixed state by a factor of 4(J/∆)2. Adding Raman
beams (with the parameters presented in Fig. 4) increases
the loss rate by ∼ 10/s, probably caused by technical is-
sues. While previous work with 87Rb reports a lifetime
of seconds [11], the Raman hyperfine spin flip scheme
is not promising for lighter atoms because of substan-
tially higher heating rates compared with 87Rb, which
are 103(105) times higher for 23Na(6Li) [28]. Even with-
out major improvements, the lifetimes achieved in our
work are longer than any relevant dynamic time scale
and should be sufficient for further studies, including ob-
servation of the stripe phase [29].

Coupling between the two spin states is provided by
two λIR beams: one along the superlattice direction z,
the other orthogonal to it (along x). The frequency dif-
ference of the two beams is close to the offset in the dou-
ble well, allowing near-resonant population transfer. The
recoil kz along the lattice is necessary to couple the two
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FIG. 2. (color) Spontaneous formation of an antiferromag-
netic spin texture. (a),(b)Time-of-Flight(TOF) pattern of
atoms in the ground (first excited) band of the superlattice.
After preparation of the |↑〉 state with quasimomentum q = 0,
it relaxes to the bottom of the band at q = π/d. (c)An equal
mixture of spin states is prepared by rapidly switching the su-
perlattice parameters. The two spin states can be separated
in TOF by a pseudospin Stern-Gerlach effect [23].The figure
shows that both spin states are in q = 0 before the relaxation.
(d)After relaxation, spinor BECs with states |↓〉, q = 0 and
|↑〉, q = π/d are observed. The momentum pattern implies a
periodic structure at 2d, twice the lattice constant, indicating
that an antiferromagnetic spin structure with a doubled unit
cell has formed. The plus/minus signs indicate (one possible
choice for) the phase of the BEC wavefunction. n is the site
index.

orthogonal spin states in the double well, and was chosen
to be kz = π/d. The recoil kick kx in the transverse plane
provides the coupling between the free-space motion in
the transverse plane and the spin. It has opposite signs
for the transition |↓〉 to |↑〉 and the reverse transition.
The Raman coupling can be described as a moving po-

tential VRaman = Ωcos(kxx + kzz − δ · t), characterized
by a 2-photon Rabi frequency Ω, a detuning of Raman
beams δ and a wave vector (kx, 0, kz). We characterize
the states by their spin, quasimomentum q, and x mo-
mentum kx (the y momentum is always zero).
If the system is initially prepared in the state

|↓, q = 0, kx = 0〉, the adiabatically ramped Raman
beams will transfer it to a new eigenstate:

|Ψ1〉 = |↓, 0, 0〉+K1e
−iδt |↑, π/d, kx〉

+M1e
−iδt |↓, π/d, kx〉+M ′

1e
iδt |↓,−π/d,−kx〉 (1)

If prepared in |↑, π/d, 0〉, the new state will be:

|Ψ2〉 = e−i∆t |↑, π/d, 0〉+K2e
i(δ−∆)t |↓, 0,−kx〉

+M2e
i(δ−∆)t |↑, 0,−kx〉+M ′

2e
−i(δ+∆)t |↑, 0, kx〉 (2)

The amplitudes obtained from 1st order perturbation the-
ory appear in Table I. The spin-orbit coupling is de-
scribed by the second term in (1), (2). In addition, the

TABLE I. The amplitudes of the wavefunctions in eqs. (1)(2)
obtained from 1st order perturbation theory. (i = 1,2)

States Mi M ′
i K

|Ψ1〉 − 1

2

Ω

Er−δ
− 1

2

Ω

Er+δ
−i e

−i
π

4
√

2

J

∆

Ω

Er+∆−δ

|Ψ2〉 + 1

2

Ω

Er+δ
− 1

2

Ω

Er−δ
+i e

i
π

4√
2

J

∆

Ω

Er−∆+δ

Raman beams act as a co-moving lattice and (in the
limit δ ≫ Er) create a moving density modulation in
the two spin states, described by the third and fourth
terms. The spin-orbit coupling shows a resonant behav-
ior for δ ≈ ∆—the range of interest for SOC—where
the moving density modulation is non-resonant. Both
contributions are proportional to Ω/∆. The off-resonant
counter-rotating spin flip term is proportional to ∆−2

and has been neglected. For δ ≫ Er, all off-resonant
amplitudes Mi, M

′
i become ≈ Ω/δ. For δ = ∆ and both

spin states populated, the spin-orbit admixture of |Ψ1〉 is
expected to form a stationary interference pattern with
|Ψ2〉 along x with wavevector kx, and vice versa which
constitutes the stripe phase of spin-orbit coupled BECs in
the perturbative limit. (In general, the periodicity of the
stripes depends on β and the atoms’ interactions [19].)
The resonant Raman coupling leads to the standard

spin-orbit Hamiltonian [23]:

ĤSOC =
(p̂+ ασ̂z)

2

2m
+ βσ̂x + δ0σ̂z , (3)

which can be considered as equal contributions of Rashba
and Dresselhaus interactions. The parameters α =
−kx/2, β = (1/

√
2)ΩJ/∆, and δ0 = (δ − ∆)/2 are in-

dependently tunable in our experiment.
To characterize all the components of the wavefunc-

tions above, the Raman coupling was adiabatically
switched on by ramping up the intensity of the two Ra-
man beams. The momentum space wavefunction was ob-
served by suddenly switching off the lattice and trapping
beams and measuring the resulting density distribution
with absorption imaging after 10 ms of ballistic expan-
sion (Fig. 3).
The momentum components created by the Raman

beams are displaced in the x by the recoil shift ~kIR.
For off-resonant Raman beams, the pattern is symmet-
ric for the +x and −x directions—signifying the mov-
ing density modulation (see (1)(2)). The resonant spin-
orbit coupling is one-sided, with opposite transfer of x-
momentum for the two spin states—as observed in Fig. 3.
We separate the momentum peaks due to the moving
density modulation from SOC by evaluating the differ-
ence between the momentum peaks along the +x and
−x. Fig. 4 shows the resonance feature of SOC when the
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FIG. 3. (color) Characterization of spinor BECs through
their momentum distributions. (a),(e) TOF images of |↓〉
and |↑〉 states, respectively. (b),(f) Schematics of the mo-
mentum peaks for |↓〉 and |↑〉 with Raman coupling. Both
the SOC (solid arrows) and the density modulation (dashed
arrows) are shown. The main peak (filled circle) is equal to
the quasimomentum of the state. Extra peaks(open circles)
appear due to the periodic potential. (c),(d),(g),(h) Same
as in (a) and (e), but now with Raman coupling at differ-
ent detunings δ. Momentum components created by Raman
process are vertically shifted compared to (a) and (e) due to
the transverse momentum kick. The momentum shift along
the superlattice (z direction) reflects the π/d quasimomen-
tum of the Raman lattice. The off-resonant density modula-
tion creates momentum peaks which are symmetric along +x
and −x (Figs. (c),(g)), whereas resonant spin-orbit coupling
creates unidirectional momentum transfer resulting in asym-
metry (Figs. (d),(h)). (i) Spin-orbit coupled BEC with equal
population in spin up and spin down states

Raman detuning was varied. The resonances for the two
processes |↓〉 → |↑〉 and |↑〉 → |↓〉 should be separated by
2Er ≈ 15.3 kHz. The observed discrepancy is consistent
with mean field interactions which reduce the separation
by ∼ 2µ ≈ 5 kHz, where µ is the single site chemical
potential. The observed widths of the resonances are
probably dominated by the inhomogeneity of ∆ due to
the Gaussian beam profile of the IR lattice laser [23].

Having established spin-orbit coupling at the single-
particle level, the next step is to explore the phase di-
agram of spin-orbit coupled Bose-Einstein condensates
with interactions [17, 19, 21], particularly the stripe
phase. The clear signature of the stripe phase is the sta-
tionary, periodic density modulation on the BEC men-
tioned above. The periodicity is tunable through the
spin-orbit coupling strength and can be directly observed
via Bragg scattering [30]. In contrast to experiments car-
ried out with 87Rb, which has similar inter- and intra-
spin scattering lengths, our system has an adjustable
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FIG. 4. (color) Spin-orbit coupling resonances. Shown is the
population imbalance between the “+x” and “−x” momen-
tum peaks versus Raman detuning for |↓〉 → |↑〉(blue) and
|↑〉 → |↓〉(red) processes. The two sets of data were measured
for the same superlattice parameters VIR = 7.5(2)Er , VGr =
20(2)Er and φSL ≈ 0.22(1)π which gives ∆ ≈ 37(1) kHz.
The spin-orbit coupling strength β was calculated to be
0.40(5) kHz. The solid lines are Gaussian fits to the reso-
nances centered at 32.2(3)kHz and 43.2(3) kHz. The Gaus-
sian profile of the IR lattice inhomogeneously broadens the
resonances. The error bars represent one σ statistical uncer-
tainty. Inset: Resonance center frequencies versus IR lattice
depth VIR for fixed φSL. The resonances are linear in VIR with
a constant split equal to twice the recoil energy. The slope of
the linear fit reveals φSL. Error bars are the uncertainties of
the fit.

inter-spin interaction g↓↑ ≈ (J/∆)2g↓↓ = (J/∆)2g↑↑.
Small values of g↓↑/g↑↑ lead to a large window of β for
observing the stripe phase and enable higher contrast
stripes [19]. Fig. 3(i) shows the momentum distribution
of an equal spin mixture with SOC. We observed∼ 40 ms
lifetime for parameters presented in Fig. 4. After adding
Bragg detection, the observation of the stripe phase is in
reach.

In conclusion, we proposed and demonstrated a new
scheme for realizing spin-orbit coupling using superlat-
tices. An asymmetric double-well potential provides at-
tractive features for pseudospins, including long lifetimes,
adjustable interactions, and easy detection. This scheme
can be applied to a wide range of atoms including lithium
and potassium, which suffer from strong heating when
hyperfine pseudospins are coupled. On the other hand,
by combining multiple hyperfine states with the orbital
degree of the double well, our scheme can realize two-
dimensional Rashba spin-orbit coupling [31] and sugges-
tions made for alkaline-earth atoms, for example syn-
thetic non-abelian gauge potentials [32, 33], and Kondo
lattice models [34–36].
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