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We consider the creation of ’t Hooft-Polyakov magnetic monopoles by scattering classical wave pack-
ets of gauge fields. An example with eight clearly separated magnetic poles created with parity
violating helical initial conditions is shown. No clear separation of topological charge is observed
with corresponding parity symmetric initial conditions.

Magnetic monopoles are of key interest in current re-
search as they embody non-perturbative aspects of field
theories. Their rich physical and mathematical prop-
erties have inspired continued investigations ever since
Dirac first proposed their existence (e.g. [1–4]). Du-
alities that relate the spectra of particles and mag-
netic monopoles can be an important element in solv-
ing strongly coupled problems [5, 6] and may also help
understand the spectrum of fundamental particles [7, 8]
In particle physics, monopoles necessarily arise in grand
unified models of particle physics, and the standard elec-
troweak model contains field configurations that corre-
spond to confined monopoles [9].

The current investigation involves the interpretation of
magnetic monopoles in terms of particles. Can we create
magnetic monopoles by assembling particles? This prob-
lem is difficult because particles are the quanta in a quan-
tum field theory and magnetic monopoles are classical ob-
jects in that field theory. No perturbative expansion of
the quantum field theory in powers of coupling constants
can describe magnetic monopoles because properties of
the magnetic monopole are proportional to inverse pow-
ers of the coupling constant. (Recent work on resurgence
in quantum mechanics [10] offers a glimmer of hope that
divergences in the perturbative expansion may hold non-
perturbative information.) A more modest objective is to
study the creation of magnetic monopoles by scattering
classical waves, where the classical waves can themselves
be thought of as quantum states containing high occu-
pation numbers of quanta. This is the approach we shall
take.

Past work on the creation of kinks in 1+1 dimen-
sions [11–17], on the decay of electroweak sphalerons
[18, 19], and on the scattering and annihilation of mag-
netic monopole-antimonopole [20], together with results
from magneto-hydrodynamics (MHD) [21], offers some
guidance on initial conditions that may be suitable for
creating magnetic monopoles. We will further explain
these motivations when describing our initial conditions.

We will work with an SO(3) field theory, as considered
by ’t Hooft [22] and Polyakov [23], that contains a scalar
field in the adjoint representation, φa (a = 1, 2, 3), and
gauge fields, W a

µ , with the Lagrangian

L =
1

2
(Dµφ)a(Dµφ)a− 1

4
W a
µνW

aµν− λ
4

(φaφa−η2)2 (1)

where,

(Dµφ)a = ∂µφ
a − igW c

µ(T c)abφb (2)

and the SO(3) generators are (T a)bc = −iεabc. The gauge
field strengths are defined by

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν . (3)

Our numerical methods are borrowed from Numerical
Relativity [24]. We use temporal gauge W a

0 = 0 and treat
Γa ≡ ∂iW

a
i as new variables whose evolution ensures

that the Gauss constraints are satisfied. The resulting
classical equations of motion that we want to solve are
written as

∂2t φ
a = ∇2φa − gεabc∂iφbW c

i − gεabc(Diφ)bW c
i

−λ(φbφb − η2)φa − gεabcφbΓc (4)
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−DiΓ
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0i) + gεabcW b

iW
c
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+gεabcφb(Dtφ)c] (6)

where W a
0i = ∂tW

a
i in the temporal gauge, DiΓ

a ≡
∂iΓ

a − gεabcΓbW c
i , and g2p is a free parameter. Ana-

lytically, the square bracket in Eq. (6) vanishes due to
the Gauss constraints and the value of g2p is irrelevant.
However the square bracket does not vanish when we dis-
cretize the system and a non-zero value of g2p is critical to
ensure numerical stability [24]. After some experimenta-
tion we set g2p = 0.75 in our runs. We also set g = 0.5,
λ = 1 and η = 1 in our numerical work.

The fields are evolved using the explicit Crank-
Nicholson method with two iterations [25]. We have used
a new implementation of absorbing boundary conditions.
Essentially, only the Laplacian of the fields on the lattice
boundaries are replaced using radially outgoing bound-
ary conditions. For example,

∇2φa → −r̂ · ∇(∂tφ
a) (7)

at a boundary point with r̂ the unit radial vector from
the center of the box. The first order spatial derivatives
throughout the equations of motion are evaluated on the
boundaries using one-sided differences. We have found
good stability with this strategy.

The non-algorithmic part of this project is to devise
initial conditions that are likely to result in monopole
creation. As noted in Ref. [15], a crucial hint comes from
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the conservation of helicity in MHD in plasmas with high
electrical conductivity. (Magnetic helicity is defined as
the volume integral of A ·B where A is the electromag-
netic gauge potential and B = ∇×A.) Combined with
the observed conservation of electromagnetic helicity dur-
ing sphaleron decay [18, 19] and the repulsive force be-
tween monopoles and antimonopoles that are twisted and
that yield magnetic helicity on annihilation [20], it seems
like a good idea to try initial conditions that are built
from helical, i.e. circularly polarized gauge waves. Also,
MHD simulations indicate that helicity causes magnetic
fields to expand out to larger length scales (“inverse cas-
cade”), so that by colliding helical waves, helicity will get
compressed, causing tension against the natural tendency
to expand. This tension can relax if helicity conservation
is violated, either with a decrease in the plasma electrical
conductivity or by producing magnetic monopoles.

We choose only one of the 3 SO(3) gauge fields to be
non-trivial in the initial conditions. Let this be W 3

i . Ini-
tially, at t = 0, W 3

i is given separately for waves prop-
agating in the +z and −z direction in terms of scalar
functions f1(x, y), f2,3(t± (z ∓ z0)) with z0 > 0. For the
waves that are functions of t+ (z − z0), we have:

W 3
x = ∂yf1(ωf2 − ∂zf2) cos(ω(t+ (z − z0))) (8)

W 3
y = ∂xf1(ωf2 + ∂zf2) sin(ω(t+ (z − z0))) (9)

W 3
z = ∂x∂yf1f2[cos(ω(t+ (z − z0)))

− sin(ω(t+ (z − z0)))] (10)

Initial time derivatives, needed for evolution, can be
found by differentiating these expressions with respect
to time. Since ∇ · W 3 = 0, and the electric field
E3 = −∂tW 3, the Gauss constraint is satisfied with van-
ishing charge density. We will arrange for an initially
vanishing charge density by setting

∂tφ
a|t=0 = 0. (11)

For a packet traveling in the opposite direction, we
write the formulae in terms of f3(t− (z + z0)):

W 3
x = ∂yf1(−ω′f3 − ∂zf3) cos(ω′(t− (z + z0)) (12)

W 3
y = −∂xf1(ω′f3 − ∂zf3) sin(ω′(t− (z + z0)) (13)

W 3
z = ∂x∂yf1f3 (cos(ω′(t− (z + z0)))

− sin(ω′(t− (z + z0))) (14)

The profile functions are chosen to create localized
packets in all directions

f1(x, y) = a exp

[
− (x2 + y2)

2w2

]
(15)

f2,3(t± (z ∓ z0)) = exp

[
− (t± (z ∓ z0))2

2w2

]
(16)

where a is an amplitude and w is a width. The fre-
quencies ω and ω′ can be different in general but we

only consider ω′ = ±ω. The case ω′ = ω corresponds
to scattering of left- and right-handed circular polariza-
tions, while ω′ = −ω < 0 corresponds to scattering of
left- on left-handed circular polarization waves.

Now we linearly superpose the counterpropagating
wave packets and set t = 0 to get the initial conditions
for the gauge fields for our scattering experiments.

Next we discuss the choice of the scalar field φa. The
simplest choice is φ1 = 0 = φ2, φ3 = η but this is too
simple. In this case, W 3 corresponds to the massless
“photon” of the model, and in this classical evolution,
the scattering of photons does not excite any other field.
In other words, the dynamics lies in a subspace of the
full field theory [26] and the classical dynamics is exactly
as it would be in Maxwell theory. The next choice we
considered is φ1 = η, φ2 = 0 = φ3. Now W 3 is a massive
boson of the theory. This too leads to dynamics in a sub-
space, namely that spanned by {φ1, φ2,W 3}. So now the
model is effectively the Abelian-Higgs U(1) model. It is
interesting that when we performed some runs with these
initial conditions, we did observe zeros of φa, suggesting
that we had created loops of strings. We will postpone
this investigation for the future since here we are focusing
on the production of magnetic monopoles.

For the classical dynamics to explore the full model,
we take

φ1 =
η√
2
, φ2 = 0, φ3 =

η√
2

(17)

at t = 0. Now the initial gauge field wave packet is a
superposition of the photon and the massive gauge boson.

After the system has evolved for a while, we would
like to know if monopoles have been created. Since
monopoles are stable objects and the scalar field van-
ishes at their centers, the existence of a monopole can
be detected by looking for peaks of the potential energy
density that are close to the value λη4/4 = 0.25. We
follow the potential energy diagnostic with a calculation
of the topological winding which is defined as

W (S) =
1

8π

∮
S

dn̂iεijkεabcφ̂
a∂j φ̂

b∂kφ̂
c

→ 1

8π

∑
plaq.

1

4

∑
vertices

n̂iεijkεabcφ̂
a∂j φ̂

b∂kφ̂
c (18)

where n̂ is the outward unit normal to a closed surface
S and φ̂a = φa/|~φ|. Even though W (S) takes integer
values in the continuum, the discrete version may not be
an integer on small surfaces.

Our simulations are run on a 1283 lattice with lattice
spacing dx = 0.1 with field theory parameters: g = 0.5,
λ = 1, η = 1. The initial condition parameters were
chosen to be: w = 0.4, z0 = 1, a = 10, ω = 4, ω′ =
−4. With this choice of parameters, the initial energy is
∼ 105 and is much larger than the energy per monopole-
antimonopole pair, which is ∼ 102. Further exploration
of parameters and choice of initial conditions is likely
to yield monopoles even when we start with less energy,
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FIG. 1: Minimum value of |~φ| on the lattice as a function of
time showing that zeros of the scalar field are produced after
some evolution.

FIG. 2: Topological winding at late times on slices with z =
2.9, 3.7 and 5.7 for simulations on a 1283 lattice with dx = 0.1
and z = 0 at the center of the lattice. The total topological
charges on these slices are +2, -4, and +2 respectively.

though intuitively the initial conditions will have to be
more finely tuned or “coherent” if we take lower initial
energy.

The first indication that monopoles have been pro-
duced during evolution is that we see zeros of the Higgs,
as seen in Fig. 1. The presence of monopoles is confirmed
by finding the topological winding, W , for every cell of
the lattice. In Fig. 2 we show the distribution of topo-
logical charge on xy−slices, i.e. on z = constant slices

FIG. 3: Potential energy density distribution at the final time
of the simulation on spatial slices with z = 2.9, 3.7 and 5.7 as

in Fig. 2. With |~φ| = 0, the potential energy density is 0.25
for our parameters.

of the lattice, that have significant winding. It is clear
that the scattering has resulted in 4 monopoles and 4
antimonopoles. This is further confirmed by plotting the
potential energy density on these slices, shown in Fig. 3.
The peaks in the potential energy represent monopoles
within which the scalar field has a zero. On the lattice,
the zero may lie within a cell and the potential will not
quite be its maximal value of 0.25.

The distances between monopoles and antimonopoles
is on the order of 3 monopole widths where we take the
monopole width to be the inverse scalar boson mass,
m−1S = (

√
2λη)−1 = 0.7. We can estimate the veloci-

ties of the monopoles from Fig. 1 and our choice of time
step dt = dx/4 where dx is the lattice spacing. We find
that the monopoles are relativistic with v ∼ 1. A sim-
ple estimate of the monopole-antimonopole escape veloc-
ity gives vesc ∼ 0.1 when the separation of the pair is
a few monopole widths. Since the monopole and anti-
monopole velocities are not aligned, the monopoles and
antimonopoles are not bound and will continue to fly
apart with time, as we observe directly during the later
stages of the simulation.

A curious feature of the final configuration of
monopoles is that they are all located at z > 0. However,
this is not in contradiction with any symmetry, since our
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FIG. 4: Topological winding on the z = 0 slice for the ω =
+ω′ = 4 simulation. The plot does not show a clear separation
of positive and negative winding. In the second panel we show
the integrated winding per z slice as a function of z. Here
too we do not see a clear separation of positive and negative
charges.

initial conditions for ω′ = −ω are not reflection symmet-
ric under z → −z.

We have run with initial conditions for a few different
parameter values and find monopole creation for larger
values of the amplitude a and frequency ω. Of particu-
lar interest is the dependence on the sign of ω′ that de-
termines whether we are scattering left-on right-handed
waves or left- on left-handed waves. The results discussed
above are for ω = 4, ω′ = −4 (left- on left-handed waves);
so we also ran the code with ω′ = +4 and all other pa-
rameters kept the same. In Fig. 4 we show the topological
winding distribution on the z = 0 slice. The sharp nega-
tive peaks signifying possible antimonopoles have pos-
itive peaks in their neighborhoods and the integrated
charge vanishes. There are other peaks at non-zero z
but these too have canceling charge distributions in their
vicinity. The total topological charge per z slice is plot-
ted in the second panel of Fig. 4 to further illustrate this
feature. Hence, simply flipping the handedness of one of
the initial waves results in evolution in which there is no

clear separation of monopole and antimonopole charge.
This example supports the original intuition that helicity
helps separate positive and negative magnetic charge.

How can we realize initial conditions that correspond
to our incoming gauge waves? A possibility is to set
up photon collisions using high-intensity, circularly po-
larized lasers. As discussed above, at the classical level
these will not yield solitons since all the dynamics is in
an Abelian (Maxwell) subspace of the model. But quan-
tum field theory effects will generate dynamics in the full
model and will create charged, massive gauge bosons. In
the standard model of particle physics, which is based on
SU(2)×U(1) symmetry (not SO(3)), such photon col-
lisions may produce electroweak monopoles and strings
[9]. An alternative would be to shoot circularly polarized
lasers into a plasma target. To analyze this setup we will
necessarily have to account for the added complexity of
plasma dynamics.

The probability of creating monopoles in any setup de-
pends on the sensitivity of the outcome of the scattering
to small errors in the initial conditions. Is the creation
of monopoles a “chaotic” process? In the case of kinks
in 1+1 dimensions, it is known that their scattering and
annihilation is chaotic [27, 28]. This ties in with the
chaotic behavior seen in the creation of kinks [11, 12]
and it appears that the creation of kinks is very sensi-
tive to the initial conditions. However, chaos seems to be
absent in the annihilation of magnetic monopole and an-
timonopole, at least within the domain of scattering pa-
rameters that have been investigated [20]. This suggests
that the creation of monopoles will also not be chaotic
but this is something that needs to be investigated.
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