
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Understanding Quantum Tunneling through Quantum
Monte Carlo Simulations

Sergei V. Isakov, Guglielmo Mazzola, Vadim N. Smelyanskiy, Zhang Jiang, Sergio Boixo,
Hartmut Neven, and Matthias Troyer

Phys. Rev. Lett. 117, 180402 — Published 28 October 2016
DOI: 10.1103/PhysRevLett.117.180402

http://dx.doi.org/10.1103/PhysRevLett.117.180402


Understanding Quantum Tunneling through Quantum Monte Carlo Simulations

Sergei V. Isakov,1 Guglielmo Mazzola,2 Vadim N. Smelyanskiy,3

Zhang Jiang,4, 5 Sergio Boixo,3 Hartmut Neven,3 and Matthias Troyer2

1Google, 8002 Zurich, Switzerland
2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

3Google, Venice, CA 90291, USA
4QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA

5Stinger Ghaffarian Technologies Inc., 7701 Greenbelt Rd., Suite 400, Greenbelt, MD 20770, USA

The tunneling between the two ground states of an Ising ferromagnet is a typical example of
many-body tunneling processes between two local minima, as they occur during quantum annealing.
Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays
the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases is
O(∆2), where ∆ is the tunneling splitting (or equivalently the minimum spectral gap). An important
consequence is that QMC simulations can be used to predict the performance of a quantum annealer
for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions
in imaginary time, equivalent to a projector QMC algorithm, we obtain a quadratic speedup for
QMC, and achieve linear scaling in ∆. We provide a physical understanding of these results and
their range of applicability based on an instanton picture.

Quantum annealing [1–6] (QA) has been proposed as a
method to solve combinatorial optimization problems. In
contrast to its closely related classical counterpart, sim-
ulated annealing (SA) [7], which makes use of thermal
fluctuations to escape local minima of the energy land-
scape in the search for a low energy solution, QA can
additionally exploit quantum tunneling. In QA the sys-
tem closely follows the ground state of a time-dependent
Hamiltonian H(t) whose initial ground state at t = 0
is easy to prepare. The final Hamiltonian H(tfinal) en-
codes the cost function of a combinatorial optimization
problem.

Random ensembles of hard problems are closely con-
nected to spin glass models known in statistical physics.
There one typically passes through a second order quan-
tum phase transition from a paramagnetic into a glassy
phase, where the energy gap closes polynomially with
problem size N , and then encounters a cascade of avoided
level crossings with typically exponentially small gaps
∆ ∝ e−αN inside the glassy phase [3, 8–10]. In other
problems, such as Grover search or number partitioning,
there may just be a single exponentially small gap at a
single first order quantum phase transition. Avoided level
crossings with exponential gaps are the main bottleneck
in quantum annealing and are in most cases associated
with tunneling processes.

Simulations are important to understand the mecha-
nisms of QA and find the class of problems for which
QA may perform better than SA and other classical algo-
rithms. QMC simulations have been performed [3, 11, 12]
on problems of much larger sizes than accessible by direct
integration of the time dependent Schrödinger equation.
In particular, a recent numerical study of random Ising
spin glass instances [12] has reconciled expectations of
quantum speedup based on QMC simulations [3] with
experiments that failed to detect it [5].

The major bottlenecks of QMC simulations of QA are
also associated with tunneling events. However, while
QMC faithfully samples the equilibrium thermal state of
a quantum system it does not directly simulate its uni-
tary time evolution. In particular, the universal critical
exponents at second order quantum phase transitions are
different than those of the stochastic QMC dynamics, as
was recently pointed out in this context [13]. Neverthe-
less, correlations between QMC dynamics and the gap
have recently been observed in simple models [14].

In this Letter we show that despite the different dy-
namics there exists a broad class of tunneling problems
where QMC is not “merely” a quantum-inspired classi-
cal optimization algorithm [3–5]. In these problems the
time of QMC to simulate quantum mechanical tunnel-
ing scales identically (in leading exponential order) with
the problem size to the tunneling rate of a physical sys-
tem and QMC is thus a quantitatively faithful predictor
of QA performance. We also discuss possible types of
problems where this may not apply.

Tunneling in a transverse field Ising model — To es-
tablish the equivalence of QA and QMC tunneling dy-
namics in the case of quantum spin systems we study
the archetypical model of an Ising ferromagnet in the
presence of a weak transverse field Γ with Hamiltonian
H = −Γ

∑
σxj −

∑
Jijσ

z
i σ

z
j , considering both a linear

chain with couplings Jij = (δi,j+1 + δi,j−1)/2 and fully
connected clusters with Jij = 1/2L, where L is the num-
ber of spins.

For small Γ there are two degenerate ground states:
the configuration labeled |↑〉 with spins aligned pointing
(predominantly) up and average magnetization per site
m ≡ 1

L

∑
i〈σzi 〉 ≈ +1 and the configuration labeled | ↓〉

with m ≈ −1. For finite L the transverse field term mixes
the two states with an exponentially small (in L) but
nonzero tunneling matrix element ε = 〈↑ |H|↓〉. This lifts
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Figure 1. Upper panel: Typical instanton/anti-instanton tra-
jectory with periodic boundary condition in imaginary time.
Along such trajectories the path samples both the |↑ 〉 and |↓ 〉
states. The magnetization m exhibits two jumps correspond-
ing to instantons (tunneling events) in imaginary time (red
arrows). Lower panel: with open boundary condition only
one instanton is required and the tunneling probability thus
increased. On the right we sketch the double-well potential.

the degeneracy between the two ground states, resulting
in an exponentially small energy gap ∆ = 2ε between
the states |ψ±〉 = 1/

√
2 (|↑〉 ± |↓〉). This expression for

the gap is also valid in a general case of avoided level
crossings when the system can be approximated by a two-
level system.

Adiabatically tuning a (weak) longitudinal field
−h

∑
i σ

z
i from a small positive to a small negative value,

we encounter a tunneling problem, which is similar to the
typical tunneling problem of QA at avoided level cross-
ings, with the spins having to tunnel from |↑〉 to |↓〉.

Tunneling in path integral QMC — QMC simulations
are performed by sampling imaginary time paths, ob-
tained from a mapping of the partition function of a D-
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Figure 2. Path integral QMC transition time ξ as a function
of the inverse temperature for a chain at Γ = 0.7. At high
temperatures ξ is independent of the system size L and sup-
pressed as exp(−Ebarrier/T ). At low temperatures, quantum
tunneling becomes more efficient and depends only on L.

dimensional quantum system to a (D + 1)-dimensional
classical path integral configuration, which consist of P
replicas of the same physical system with spins Si,τ = ±1
where the index i = 1, · · · , L denotes the spatial index
and the index τ = 1, · · · , P labels the time slices. Our
QMC simulations have been performed both with a large
number of replicas P = 128 in order to be close to the
physical continuous time limit, and also directly in the
continuous time limit [15]. For updates we use variants
of the Wolff [16] and Swendsen-Wang algorithm [17] to
build local (in space) clusters along the imaginary time
direction [18].

During the QMC simulation the total magnetization
m(τ) ≡ 1

L

∑L
i=1 Si,τ evolves stochastically in Monte

Carlo time t. Preparing the system in the vicinity of a
local minimum, for example by choosing Si,τ = 1, most
of the time all replicas sample spin configurations which
are fluctuations around the same minimum energy con-
figuration, i.e. m(τ) ≈ 1. Every now and then the path
m(τ, t) evolves towards a transition state m∗∗(τ) corre-
sponding to the saddle point of the free energy functional
F [m(τ)] of the classical spin model. This saddle point
corresponds to an instanton/anti-instanton pair [19] (see
Fig. 1 and Ref. [20]). The instantonic path m∗∗(τ) costs
energy as it creates two domain walls in the imaginary
time axis, which separate replicas which opposite magne-
tization m(τ). These domain walls can diffuse in opposite
directions around the imaginary time loop, changing the
total manetization to m(τ) = −1 ∀ τ when they annihi-
late, signaling the completion of a tunneling event. The
creation of m∗∗(τ) represents the rate-limiting process
of tunneling decay in both QMC and QA whose rate is
∝ ∆2 (see below).

To measure the tunneling time ξ we start QMC sim-
ulations in a fully polarized state with m(τ) = 1 and
measure the number of QMC sweeps (defined as one at-
tempted update per spin) required to obtain a well sepa-
rated instanton/anti-instanton pair. We detect the latter
by requiring that at least the 25% of the replicas reverse
their magnetization to m(τ) = −1 [21].

We note that coupling to an environment could lead
to thermally activated events, whose pathways traverses
the high energy states m ≈ 0 with energy Ebarrier ∼ L/2
for a fully connected cluster and Ebarrier ∼ 4 for a linear
chain. These are suppressed by a factor exp(−βEbarrier)
and at low temperatures quantum tunneling becomes ad-
vantageous, as shown in Fig. 2.

In Fig. 3 we show the measured average tunnelling time
ξ in QMC fully connected clusters as a function of L and
Γ and observe an exponential scaling with L. The data
are well fitted by aL−1 exp(bL) (see Ref. [20] for ana-
lytical derivation in a semiclassical approach). There is
only a very weak temperature dependence for QMC in
the low temperature quantum regime, mostly due to in-
stanton diffusion. As shown in Fig. 3 the scaling of QMC
simulations is identical to 1/∆2 within error bars, thus
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Figure 3. Average QMC tunneling time ξ as a function of sys-
tem size L (open symbols) for a fully connected graph at β = 8
for various values of the transverse field Γ. Fits of the times
for 8 ≤ L ≤ 16 are shown as solid lines. To compare to phys-
ical QA we also show α(Γ)/∆(Γ, L)2 with filled symbols, ob-
tained by exact diagonalization. Rescaling by L-independent
constants α(Γ) we find identical scaling with system size L.

101

102

103

104

105

106

107

8 10 12 14 16 18 20

T
u
n
n
el

in
g

ti
m

e
ξ,

α
(Γ

)/
∆

(L
,Γ

)

L

QMC: open symbols
ED: filled symbols

Γ = 0.35
Γ = 0.4
Γ = 0.45
Γ = 0.5
Γ = 0.55

Figure 4. (color online). Average PIGS tunneling time ξ as
a function of L (open symbols) for a fully connected graph
at β = 8 with various values of the transverse field Γ. Fits
of the times for 8 ≤ L ≤ 20 are shown as solid lines. Points
proportional to 1/∆(L), obtained with exact diagonalization,
are shown with filled symbols.

confirming the identical scaling behavior of both types
of dynamics. The same behavior is observed for linear
chains [20]. We validate these findings by simulations
of tunneling in a one-dimensional double well potential
V (x) = λx4 − x2, where ∆ depends exponentially on
λ. Performing QMC simulations in continuous space [22]
we compared the average QMC tunneling time to 1/∆2

and find excellent agreement over a wide range of time
scales [20]. Furthermore, we find that the QMC scaling
does not significantly depend on whether local or global
updates are used.

Accelerating tunneling in QMC — We expect a
quadratic speedup for QMC with open (OBC) instead of

periodic boundary conditions (PBC) in imaginary time
as in this case only one domain wall (instanton) is cre-
ated in the magnetization reversing process (see Fig. 1).
Indeed, as shown in Fig. 4 and Table I of Ref. [20] the
scaling exponent is reduced by a factor of two compared
to QMC with PBC and open system QA, and the tunnel-
ing time now scales as 1/∆ instead of 1/∆2. The data are
well fitted by aL−1/2 exp(bL). Using OBC describes a so-
called path integral ground state (PIGS) simulation [23].
PIGS algorithm can be viewed as projecting from a trial
state (given by the boundary conditions in imaginary
time) and sampling from the ground state wave function
at large enough β, hence providing the tunneling proba-
bility amplitude that is proportional to ∆. This finding
may explain the recently observed superiority of QMC
projecting techniques compared to PIMC in continuous
space models [24].

Tunneling decay of a metastable state — To gain in-
sight into the equivalence of QA and QMC we consider
the tunneling between two nearly degenerate minima x1

and x2 of a potential V (x) with continuous variable x.
The pioneering work of Langer [25, 26] makes an explicit
connection between the tunneling rate of a particle and
the classical Kramers escape rate from the metastable
state of a non-linear stochastic field process. This sheds
light on how QA and QMC tunneling dynamics are re-
lated.

Within a semiclassical picture, the wave function de-
cays exponentially in the classically forbidden region.
In the particular case where the action under the bar-
rier is purely imaginary this corresponds to a particle
moving with imaginary momentum along the imaginary
time axis t = −iτ [27, 28]. The amplitude of tunnel-
ing from the ground state associated with a local min-
imum V (x1) = 0 is determined by the path integral
Kτ (x′,x1) =

∫
D[x(τ ′)] e−Sτ [x(τ ′)]/~ between the local

minimum x(0) ≈ x1 and the turning point x(τ) = x′ at
the barrier exit chosen to maximize Kτ . Here Sτ [x(τ ′)] =∫ τ

0
dτ ′ 12mẋ2(τ ′) + V (x(τ ′)) is the action of the path un-

der the barrier and τ → ∞. The dominant contribution
comes from the stationary action path (instanton) x∗(τ ′)
corresponding to a particle moving in the inverted poten-
tial −V (x). The tunneling amplitude is proportional to
exp(−Sτ [x∗(τ ′)]/~).

Similar arguments are known in statistical physics
where the partition function Z = TrKβ of a state ther-
malized near a local minimum x1 of the potential corre-
sponds to the path integral in imaginary time with PBC
for x(τ) with 0 ≤ τ < β = ~/kBT . By tunneling away
from the minimum, the partition function acquires an
imaginary part. It is dominated by the instanton/anti-
instanton path x∗∗(τ) that moves under the barrier start-
ing near x1, reaches the turning point x′, and returns
[19]. We note that −2 ImZ/(βReZ) ∝ ∆2 [29] gives a
squared tunneling amplitude (∝ e−Sβ [x∗∗(τ)]/~) because
we pay the cost of creating an instanton and an anti-
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instanton.

In the context of QA we introduce a slowly varying field
that changes the order of the minima x1,2 of V (x, t). At
the start of QA the system is localized in the vicinity of
x1 and at the end it arrives at the vicinity of x2 after
a tunneling event at time tc when V (x1, tc) ≈ V (x2, tc).
In the case of open system QA when the dephasing time
T2 � ∆−1 there is incoherent tunneling at t ≈ tc from x1

to x2 with rate T2 ∆2, determining the time scale of open
system QA [30–32]. The same scaling with ∆2 is also
obtained in closed systems by the Landau-Zener formula.

Following Refs. [25, 26], the tunneling decay rate for-
mally corresponds to the Kramers escape rate from a
metastable state of a classical 1D field with order pa-
rameter x(τ) satisfying the PBC and free energy func-
tional F = Sβ [x(τ)]/β. The stochastic evolution of this
field x(τ, t) in time t is described by the Langevin equa-
tion xt = −µβ−1[∇V − mxττ ] + (2µ~/β)1/2 η, where
η(τ, t) is a random force delta correlated in both of
its arguments and µ is a relaxation coefficient. We
now observe that the same dynamics describes the stan-
dard path integral QMC to calculate the partition func-
tion Z. QMC samples paths x(τ, t) with sweeping rate
∝ µ. The functional F [x(τ)] has a saddle point x∗∗(τ)
that the QMC trajectory x(τ, t) crosses during the es-
cape event from the metastable state x1 towards x2.
According to Kramers theory the escape rate is W ∝
e−F/kBT = e−Sβ [x∗∗(τ)]/~. This saddle point is pre-
cisely the instanton/anti-instanton path, and therefore
the QMC escape rate W ∝ ∆2 ∝ −ImZ. Therefore, in
this archetypical example, the time needed for a physical
system to tunnel has the same exponential factor as the
corresponding simulation time of quantum Monte Carlo.
In the case of OBC in imaginary time, the tunneling tra-
jectory is dominated by configurations with a single in-
stanton x∗(τ) with corresponding escape rate W ∝ ∆ –
giving quadratic speedup of QMC over incoherent tun-
neling.

The semiclassical instanton picture is applicable to
tunneling in the fully-connected mean-field models of
quantum spins with p-body interactions and a transverse
field and in other models, in which tunneling transitions
occur via simultaneous collective reorganization of large
groups of spins. The above numerical study considers one
such model. The semiclassical approach becomes asymp-
totically exact in the limit of large number of spins L� 1
and it has been recently applied to this model class (see,
e.g., [33, 34] and also Sec. II of Ref. [20]). The coordi-
nate of the instanton trajectory in this case corresponds
to the total magnetization m(τ) per spin. It t is pos-
sible to establish a direct correspondence between the
quantum instanton and saddle point of the free energy
functional corresponding to the Gibbs probability mea-
sure in QMC updates (see Sec. III in Ref. [20]). This
provides a theoretical basis using Kramers escape theory
for the above numerical results connecting the scaling ex-

ponents for tunneling rates to the corresponding scaling
of the QMC.

Potential obstructions for QMC — While our findings
apply to tunneling in a broad class of mean field mod-
els with purely imaginary time instantons, we shall also
mention several areas where obstructions for the efficient
simulation of quantum tunneling with QMC might exist.

QMC sampling may sometimes be inefficient due to
topological obstructions such as winding numbers of
world lines [35]. While PIGS simulations often solve this
problem by cutting the PBC, an obstruction remains if
the ground state wave function and its square are concen-
trated on different supports [35] – although suitable trial
wave functions at the boundaries of the path integral can
alleviate this problem. Conversely, the quantum system
might have conserved quantum numbers that limit tun-
neling paths to a lower-dimensional subspace than that
explored by QMC [20].

QMC may also be less efficient in optimization prob-
lems that require tunneling to or from multidimensional
minima. In such problems the semiclassical action un-
der the barrier S(x) is often not purely imaginary and
displays complex features due to the presence of caus-
tics, non-integrability and non-analyticity [28, 36]. Due
to a highly oscillating nature of the wave function in the
classically forbidden region it is not clear if the tunneling
dynamics can be faithfully recovered with QMC.

Another important open question arises in problems
that exhibit a many-body location/delocalization tran-
sition at finite values of transverse field [37]. There a
delocalized phase can exist in a range of energies with ex-
ponentially many local minima separated by large Ham-
ming distances and connected by a large number of tun-
neling paths [38]. QA, in contrast to QMC dynamics,
may profit from the positive interference between expo-
nentially many paths.

We also note that the polynomial prefactors can be dif-
ferent for QMC and QA even in the cases when tunneling
is described by mean field models with purely imaginary
time instantons.

Conclusions — We conclude by discussing the conse-
quences of our results for quantum annealing. Despite
QMC dynamics being different from unitary evolution,
the relevance of instanton configurations for tunneling
processes in a class of models with purely imaginary time
instantons leads to the same exponential scaling of tun-
neling rate through a tall barrier in both cases. A conse-
quence of this equivalence is that QMC simulations are
predictive of the performance of QA for hard optimiza-
tion problems where the performance is limited by such
tunneling events.

We also observed that is some cases a version of QMC
with OBC (PIGS) can provide a quadratic speedup.
While one can, theoretically, recover such a quadratic
speedup [39] in QA if the evolution of the energy gap is
exactly known and if the tunneling is fully coherent [31],
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this protocol can hardly be realized in practical QA. Nev-
ertheless, a quadratic speed up can be achieved with
polynomial overhead on a universal quantum computer
using an approach that relaxes the above conditions [40].

These findings demonstrate that QMC simulations can
be used as a powerful and predictive tool to investigate
optimization problems amenable to quantum annealing.
Our study demonstrates that the quest for quantum
speedup using a physical quantum annealer must focus
on the problems and hardware that allows to reach be-
yond the class of problems discussed in this paper where
the identical scaling of QMC and QA preclude a scal-
ing advantage and where PIGS can achieve a quadratic
speedup for tunneling through individual barriers. The
absence of calibration and programming errors, the flex-
ibility in simulating arbitrary graph topologies without
the need to embed into a hardware graph, and the ob-
served quadratic speedup for tunneling through individ-
ual barriers in PIGS simulations makes QMC a competi-
tive classical technology. Nevertheless, a physical QA can
still be many orders of magnitude faster than QMC simu-
lations [41]. We expect that the physical mechanisms be-
hind the possible obstructions for QMC discussed above
will provide interesting starting points for future stud-
ies of potential quantum speedup. In particular, one has
to explore the power of QA with non-stoquastic Hamil-
tonians for which the negative sign problem prevents a
matching QMC algorithm.
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